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In this study, we extended a two-parameter bathtub hazard model that exhibits either
an increasing or a bathtub-shaped failure rate depending on its shape parameter. The
model was expanded to include covariates in the presence of right- and interval-censored
data. To handle interval-censored data, we employed two imputation techniques: midpoint
and random imputation. A simulation study was conducted to evaluate and compare
the performance of these imputation methods using standard error (SE) and root mean
square error (RMSE) values. The findings indicated that random imputation outperforms
midpoint imputation in most instances, achieving lower SE and RMSE across different
censoring proportions and sample sizes. To demonstrate the practical applicability of the
extended model, a real dataset on the occurrence of oral lesions in children after liver
transplantation was used for illustrative purposes.
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1. Introduction

The failure rate function is an important characteristic in modelling lifetime data. Among the failure
rate functions, common hazard functions, such as constant, increasing, or decreasing, are typically
modeled using well-known distributions – such as Weibull, gamma, or exponential. However, these
models are limited in their ability and flexibility to represent non-monotonic failure rates, such as
bathtub-shaped failure rates. This hazard function is characterized by three main phases: an initial
period of decreasing hazard, followed by a constant hazard phase, and finally an increasing hazard
phase [1, 2]. Additionally, this hazard function is relevant in contexts such as human mortality and
newly launched products, where high initial failure rates can be due to infant mortality, design defects,
production errors, or inexperienced maintenance, which are then followed by a constant failure rate
during the useful life and eventually by high failure rates due to aging or wear-out — a pattern that
resembles the shape of a bathtub [3]. Therefore, there are many life distributions developed to model
data with bathtub-shaped distribution over the last few decades. Most of them are generalizations,
modifications, and extensions of existing distributions. For instance, one important example is the
extension of the Weibull distribution. Early work by [4] proposed a three-parameter exponentiated
Weibull (EW) distribution that can exhibit a bathtub-shaped failure rate. Other extensions of the
Weibull distribution have been discussed in [5] and [6], among others.

An interesting two-parameter lifetime distribution that can exhibit either monotonically increasing
or bathtub-shaped failure rates was proposed by [7]. He pointed out that the confidence intervals for its
shape parameter and the joint confidence regions for both parameters have a closed form, which makes
this model the only known two-parameter distribution with bathtub-shaped failure rates that provides
exact joint confidence regions for its parameters. The Chen distribution is referred to as the bathtub
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hazard model throughout this paper. Due to its useful properties, the bathtub hazard model was
extensively studied by other researchers. For example, [8] proposed a simple exact statistical test for
the shape parameter of the bathtub distribution and found that the new test was more powerful than the
one originally proposed by Chen [7]. [9] discussed exact confidence intervals and exact joint confidence
regions for the parameters of the bathtub hazard model based on progressively type-II censored samples.
[11] investigated interval estimation methods for the parameters of the bathtub hazard model using
type-II censored samples. [10] derived maximum likelihood and Bayesian estimators for the bathtub
hazard model under progressively type-II censored samples. However, despite certain useful properties,
the model lacks practical applications because it does not possess a scale parameter [12, 13]. Hence,
researchers were motivated to extend the bathtub hazard model. In this regard, [12] extended the
model to a three-parameter distribution and named it the extended-Weibull distribution due to its
relation to the Weibull distribution. [13] subsequently studied the properties of the extended model,
including the shapes of the density and failure rate functions. They also obtained confidence intervals
for the parameters and carried out a likelihood ratio test to evaluate the extended model. Several other
studies have contributed to extending the bathtub hazard model, as reported in [14–17].

Several studies have been conducted to discuss and modify the bathtub hazard model. However, few
studies have extended the model to accommodate covariates, whether fixed or time-dependent. There-
fore, this paper aims to present an extended version of the bathtub hazard model, which incorporates
a fixed covariate in the presence of right- and interval-censored data. To handle interval-censored
data, two imputation methods will be employed: midpoint imputation and multiple imputation. The
methods will then be compared based on the standard error (SE) and root mean square error (RMSE).

The midpoint imputation approach has gathered significant attention from researchers in studies
related to AIDS. Several studies, including those by [18–20], have employed similar methodologies to
estimate the year of HIV-1 seroconversion by using the midpoint between the dates of a negative and
a subsequent positive HIV-1 antibody test. Seroconversion is the period during which an individual’s
blood serum changes from HIV-negative to HIV-positive due to the presence of the virus. Consistent
with the findings of [19, 21], it was observed that when the seroconversion interval is relatively short
(less than two years), the midpoint closely aligns with estimates based on different assumptions about
the underlying distribution. In addition to midpoint imputation, several other studies employed right-
point or left-point imputation. In addition, a probability imputation method, such as random and
multiple imputation techniques, was commonly used to impute the event times for interval-censored
observations. In a study by [22], several imputation methods, including midpoint, left-point and right-
point, random, mean, and median imputation, were compared for a parametric Cox model with partly
interval-censored data. The results showed that random imputation, as well as mean and median
imputation, yielded better performance compared to other imputation techniques. In a recent study
conducted by [23], it was found that the accuracy of midpoint imputation was influenced by sample size;
as the sample size increased, the corresponding value decreased. Conversely, the multiple imputation
method consistently produced low residuals, irrespective of sample size.

The paper is organized as follows: the next section presents the bathtub hazard model and its
distributional properties, followed by a brief discussion of imputation methods. A subsequent section
provides a simulation study that compares the performance of parameter estimates with regard to
each imputation method. The extended model with the best-performing imputation method is then
illustrated using an oral lesion occurrence dataset. Finally, the paper concludes with a summary of
findings.

2. Bathtub hazard model

The cumulative density function of the bathtub distribution is given by

F (t) = 1− eλ(1−et
γ
), t > 0. (1)
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The probability density function of the model can be defined as

f(t;λ, α) = λ γ tγ−1etγeλ(1−et
γ
). (2)

The survival and failure rate functions are given, respectively, by

S(t;λ, γ) = eλ(1−et
γ
), (3)

h(t;λ, γ) = λ γ tλ−1et
γ

, (4)

where λ and γ are the parameters. The parameter γ can determine the shape of the hazard function.
The failure rate is increasing when γ < 1 and is bathtub-shaped otherwise.

In order to accommodate covariate effects to the hazard function of the bathtub hazard model, we
allow the parameter to be a function of the covariate. The function can be written as

λi = e−β0−β1xi . (5)

Let θ = (γ, β0, β1) be the vector of the model parameters. Maximum likelihood estimation (MLE)
method was used to estimate the three parameters.

Suppose we have interval-censored and right-censored lifetimes for i = 1, 2, . . . , n observations. Let
ti denotes the failure time of the ith observation. Let Li and Ri be the left and right endpoints of the
intervals for the ith subject, respectively. The following censoring indicator is defined to incorporate
right and interval censored data to the likelihood function,
δI i = if the subject is interval-censored, 0 otherwise;
δRi = if subject is right censored, 0 otherwise;
δEi = if subject is not censored (exact survival time is observed), 0.
The likelihood function for right-, interval censored or uncensored without any imputation is,

L(θ) =

n∏

i=1

[
f(ti)

]δEi
[
S(tRi

)
]δRi

[
S(tLi

)− S(tRi
)
]δIi

=

n∏

i=1

[
e(−β0−β1xi)γ tγ−1

i et
γ
i ee

(−β0−β1xi)
(
1−e

t
γ
i

)]δEi

×

[
ee

(−β0−β1xi)
(
1−e

t
γ
Ri

)]δRi
[
ee

(−β0−β1xi)
(
1−e

t
γ
Li

)
− ee

(−β0−β1xi)
(
1−e

t
γ
Ri

)]δIi
. (6)

On the other hand, the likelihood function for uncensored, right- and interval-censored with imputation
method is,

L(θ) =

n∏

i=1

[f(ti)]
δEi [S(tRi

)]δRi

[
f(t̃i)

]δIi

=

n∏

i=1

[
e(−β0−β1xi)γ tγ−1

i et
γ
i ee

(−β0−β1xi)
(
1−e

t
γ
i

)]δEi

×

[
ee

(−β0−β1xi)
(
1−e

t
γ
Ri

)]δRi
[
e(−β0−β1xi)γ t̃γ−1

i et̃
γ
i ee

(−β0−β1xi)
(
1−e

t̃
γ
i

)]δIi
, (7)

where t̃i is the imputed time, which can be the midpoint, right point, or left point of the interval or
the randomly imputed value.

Taking the logarithm of (7) we get the log-likelihood function as follows

ℓ(θ) =

n∑

i=1

[
δEi

(
−β0 − β1xi + ln(γ) + (γ − 1) ln(ti) + tγi + e(−β0−β1xi)

(
1− et

γ
i

))]

+ δRi

[
e(−β0−β1xi)

(
1− e

tγ
Ri

)]

+ δIi

[
−β0 − β1xi + ln(γ) + (γ − 1) ln(t̃i) + t̃γi + e(−β0−β1xi)

(
1− et̃

γ
i

)]
. (8)
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3. Imputation method

This study employed two imputation techniques, which will be compared in a simulation study as
discussed in the first section. In midpoint imputation (MI) method, the event time is imputed by the
midpoint of the censoring interval, [li, ri] calculated as (li + ri)/2.

In the random imputation (RI) technique, a single imputation is performed on interval-censored
event time. A modification of the existing multiple method was done where the imputed value is
randomly selected from the distribution of the event time. Specifically, following the method outlined
by [24], it is assumed that the event time T follows a known continuous distribution. Let t denote
an interval-censored event time observed within the interval (l, r], where l 6 r. Then, the survival
functions at the endpoints of the interval are defined as: S(l) = P (T > l) and S(r) = P (T > r). A
random number is then simulated from a uniform distribution over the range [S(r), S(l)]. The resulting
uniform variate is transformed using the inverse transform method to estimate the imputed observation
time, t, within the interval.

4. Simulation study

A simulation study was conducted to evaluate the performance of the bathtub hazard model with
right-censored and interval-censored data, incorporating fixed covariate. The study was carried out
with N = 1000 replications across varying sample sizes, n = 50, 100, 150, 200, 250 and different levels of
censoring proportion (CP ): 0%, 10%, 20%, 30%, 40% and 50%. Specifically, the parameter of interest,
parameters γ, β0 and β1 and were set at 0.4, 3.3 and 0.9, respectively. The simulation was done using
the R programming language, following the algorithm as outlined below:

1. Generate covariate values xi from a standard normal distribution.
2. Generate a sequence of random numbers ui from a standard uniform distribution within the interval

(0, 1) to find the event times, ti for i = 1, 2, . . . , n.
3. Generate censoring times, ci from an exponential distribution, with the adjustment on the value of

µ to obtain the desired censoring proportion.
4. Calculate the survival time ti by:

ti =

(
ln

(
1−

ln(1− Ui)

e(−β0−β1xi)

))1/γ

. (9)

To assess the performance of the parameter estimates generated for each imputation method across
varying sample sizes and censoring proportions, the SE and RMSE values are computed as follows:

ŜE =

√√√√√ 1

N − 1

N∑

i=1


θ̂i −

1

N

N∑

j=1

θ̂j




2

, (10)

RMSE =
√(

SE2 + bias2
)
, (11)

where the bias value can be obtained as

bias = E(θ̂)− θ. (12)

To evaluate which imputation method produces better estimates, SE and RMSE values were com-
pared. In Tables 1 and 2, the SE and RMSE values for each parameter using the MI method are
presented, while Tables 3 and 4 depict these values for RI. It can be observed that both SE and RMSE
values increase as the censoring proportion increases, while they decrease with larger sample sizes. This
suggests that better estimates can be obtained with larger sample sizes and smaller values of censoring
proportion. In addition, line plots are generated to visually illustrate the performance and provide a
clearer comparison between the two imputation methods based on SE and RMSE values, see Figure
1-8. Instead of considering all combinations of the five censoring proportions and sample sizes, the line
plots in this paper highlight a subset of combinations: two censoring proportion values (CP = 10% to
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reflect lower censoring and CP = 50% for higher censoring) and two sample sizes (n = 50 to represent
smaller datasets and n = 250 for larger datasets).

Table 1. Standard error (SE) values for parameter estimates using midpoint imputation.

Estimates CP(%) n = 50 n = 100 n = 150 n = 200 n = 250
γ̂ 0 0.0231 0.0163 0.0133 0.0111 0.0099

10 0.0252 0.0169 0.0140 0.0121 0.0109
20 0.0263 0.0184 0.0147 0.0127 0.0114
30 0.0273 0.0197 0.0154 0.0135 0.0121
40 0.0284 0.0207 0.0158 0.0140 0.0130
50 0.0288 0.0223 0.0184 0.0156 0.0137

β̂0 0 0.3440 0.2367 0.1953 0.1618 0.1474
10 0.3612 0.2381 0.1981 0.1712 0.1511
20 0.3613 0.2492 0.1983 0.1708 0.1523
30 0.3679 0.2577 0.1986 0.1769 0.1557
40 0.3643 0.2571 0.2046 0.1780 0.1616
50 0.3749 0.2728 0.2244 0.1885 0.1676

β̂1 0 0.1976 0.1337 0.1064 0.0922 0.0793
10 0.1985 0.1342 0.1075 0.0948 0.0869
20 0.2125 0.1414 0.1145 0.0953 0.0863
30 0.2086 0.1452 0.1143 0.1009 0.0898
40 0.2241 0.1502 0.1145 0.1011 0.0941
50 0.2201 0.1613 0.1283 0.1090 0.0984

Table 2. Root mean square error (RMSE) values for parameter estimates using midpoint imputation.

Estimates CP (%) n = 50 n = 100 n = 150 n = 200 n = 250
γ̂ 0 0.0239 0.0166 0.0135 0.0111 0.0100

10 0.0252 0.0178 0.0157 0.0150 0.0148
20 0.0285 0.0241 0.0216 0.0233 0.0228
30 0.0322 0.0303 0.0323 0.0306 0.0314
40 0.0405 0.0398 0.0346 0.0381 0.0417
50 0.0424 0.0506 0.0491 0.0510 0.0491

β̂0 0 0.3518 0.2391 0.1967 0.1629 0.1490
10 0.3663 0.2381 0.1990 0.1723 0.1525
20 0.3613 0.2504 0.2013 0.1803 0.1624
30 0.3679 0.2605 0.2089 0.1861 0.1704
40 0.3647 0.2637 0.2138 0.1937 0.1780
50 0.3751 0.2771 0.2312 0.1989 0.1821

β̂1 0 0.2013 0.1347 0.1070 0.0928 0.0798
10 0.2031 0.1369 0.1090 0.0956 0.0886
20 0.2192 0.1437 0.1164 0.0966 0.0874
30 0.2146 0.1483 0.1163 0.1031 0.0917
40 0.2317 0.1534 0.1177 0.1036 0.0963
50 0.2267 0.1649 0.1315 0.1111 0.1004

As illustrated in Figures 1–4, the SE and RMSE values generated from both MI and RI method were
plotted for two different censoring proportions of 10% and 50%. For the lower censoring proportion
of 10%, there is not much difference in the SE values between MI and RI (see Figure 1). However, at
CP = 50%, there is a clear observation that RI produces smaller SE values (see Figure 2). Similarly,
for RMSE values at the lower censoring proportion of 10%, RI exhibits lower RMSE values than MI as
depicted in Figure 3. In Figure 4, a similar trend is observed at CP = 50%, except for the parameter
β0, where MI shows smaller RMSE values. For all cases, both the SE and RMSE values decrease as
the sample size increases.
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Table 3. Standard Error (SE) Values for Parameter Estimates Using Random Imputation.

Estimates CP(%) n = 50 n = 100 n = 150 n = 200 n = 250
γ̂ 0 0.0230 0.0162 0.0131 0.0110 0.0104

10 0.0238 0.0158 0.0134 0.0116 0.0103
20 0.0240 0.0169 0.0136 0.0116 0.0105
30 0.0248 0.0169 0.0139 0.0120 0.0107
40 0.0249 0.0180 0.0143 0.0123 0.0112
50 0.0278 0.0178 0.0144 0.0127 0.0110

β̂0 0 0.3355 0.2354 0.1916 0.1644 0.1490
10 0.3373 0.2301 0.1896 0.1674 0.1456
20 0.3367 0.2288 0.1839 0.1564 0.1427
30 0.3237 0.2266 0.1884 0.1592 0.1421
40 0.3256 0.2314 0.1837 0.1596 0.1413
50 0.3134 0.2261 0.1858 0.1591 0.1433

β̂1 0 0.1958 0.1372 0.1064 0.0935 0.0820
10 0.1948 0.1258 0.1068 0.0913 0.0819
20 0.1936 0.1303 0.1116 0.0926 0.0840
30 0.1995 0.1331 0.1086 0.0933 0.0826
40 0.1956 0.1318 0.1049 0.0955 0.0823
50 0.2068 0.1340 0.1083 0.0963 0.0841

Table 4. Root Mean Square Error (RMSE) Values for Parameter Estimates Using Random Imputation.

Estimates CP(%) n = 50 n = 100 n = 150 n = 200 n = 250
γ̂ 0 0.0238 0.0165 0.0134 0.0111 0.0105

10 0.0239 0.0160 0.0140 0.0126 0.0120
20 0.0246 0.0191 0.0162 0.0157 0.0160
30 0.0267 0.0221 0.0212 0.0206 0.0201
40 0.0295 0.0278 0.0261 0.0253 0.0265
50 0.0329 0.0317 0.0299 0.0304 0.0296

β̂0 0 0.3425 0.2370 0.1938 0.1652 0.1499
10 0.3378 0.2384 0.2046 0.1906 0.1828
20 0.3575 0.2821 0.2417 0.2365 0.2413
30 0.3817 0.3268 0.3182 0.3063 0.3041
40 0.4228 0.3940 0.3785 0.3658 0.3798
50 0.4604 0.4394 0.4143 0.4185 0.4081

β̂1 0 0.1988 0.1381 0.1074 0.0938 0.0826
10 0.1955 0.1258 0.1073 0.0920 0.0834
20 0.1937 0.1310 0.1130 0.0953 0.0887
30 0.2045 0.1355 0.1125 0.0999 0.0902
40 0.1996 0.1356 0.1107 0.1046 0.0925
50 0.2068 0.1372 0.1123 0.1022 0.0943

On the other hand, Figures 5–8 illustrate a comparison of the SE and RMSE values for MI and
RI specifically at two sample sizes, n = 50 and 250. At both sample sizes, RI consistently produced
smaller SE values compared to MI (see Figures 5 and 6). For RMSE, RI also yielded smaller values
except for the parameter, β0, where MI showed a smaller RMSE values as the censoring proportion
increased, as presented in Figures 7 and 8. In summary, RI demonstrates better performance, as it
produces smaller values of SE and RMSE in most instances, particularly for parameters γ and β1.
However, for β0, there is slight inconsistency, with MI showing better RMSE values at CP = 50%,
also for n = 50 and n = 250.

This indicates that RI generally provides more accurate and precise parameter estimates in the
bathtub hazard model with interval-censored data compared to MI at various sample sizes and censoring
proportions.
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Fig. 1. Line plots comparing SE values for γ̂, β̂0 and β̂1 using midpoint and random imputation at CP = 10%.
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Fig. 2. Line plots comparing SE values for γ̂, β̂0 and β̂1 using midpoint and random imputation at CP = 50%.
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Fig. 3. Line plots comparing RMSE values for γ̂, β̂0 and β̂1 using midpoint and random imputation
at CP = 10%.
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Fig. 4. Line plots comparing RMSE values for γ̂, β̂0 and β̂1 using midpoint and random imputation at CP =
50%.
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Fig. 5. Line plots comparing SE values for γ̂, β̂0 and β̂1 using midpoint and random imputation at n = 50.
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Fig. 6. Line plots comparing SE values for γ̂, β̂0 and β̂1 using midpoint and random imputation at n = 250.
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Fig. 7. Line plots comparing RMSE values for γ̂, β̂0 and β̂1 using midpoint and random imputation at n = 50.
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Fig. 8. Line plots comparing RMSE values for γ̂, β̂0 and β̂1 using midpoint and random imputation at n = 250.

5. Real data application

To show the applicability of bathtub hazard model in real data sets with interval-censored data, here
we consider a data set on oral lesions after liver transplantation in children aged between 0 to 18 years
taken from a study conducted A.C. Camargo Cancer Center in São Paulo, Brazil from 2013 to 2016, as
discussed in Calsavara [25]. Random imputation was used in dealing the interval-censored data in the
data set. Figure 9 illustrates the survival probabilities obtained using a non-parametric Kaplan–Meier
(solid line) and based on the bathtub hazard model (blue dotted line).
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Fig. 9. Plot of estimated survival probabilities based
on the fitted distribution and Kaplan–Meier estimator.

Fig. 10. Survival plot.
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From Figure 9, the bathtub estimates based on the bathtub hazard model appear to be roughly close
to Kaplan–Meier estimates suggesting the bathtub hazard distribution is appropriate for the oral lesion
data. Next, we obtained the bathtub hazard model with covariate, to examine the significance of the
covariate (age) on the time for oral lesions to develop after liver transplantation surgery. The covariate
of interest is the age variable which denotes patients is younger (age 6 1 year, n = 23 patients) or older
(1 < age < 18 year, n = 27 patients) at the time of transplantation. Based on the results presented
in Table 5, age group is not statistically significant (p-value = 0.2174 > 0.05). Although the p-value
suggests that there is no significant difference between the younger and older groups, the survival plot
(Figure 10) shows a slight visual difference between these groups. This difference indicates that the
analysis may require larger sample sizes or the inclusion of additional covariates to detect an effect.

Table 5. Maximum likelihood estimation (MLE) of oral lesion data.

Parameters Estimates (Standard Error) t-value p-value
γ̂ 0.3439 (0.0316) 10.893 < 2× 10−16

β̂0 1.9878 (0.5289) 3.758 0.000171

β̂1 −0.3809 (0.3088) −1.223 0.2174

6. Conclusion

In this study, we proposed an extension of the bathtub hazard model by incorporating a fixed covari-
ate in the presence of right- and interval-censored data. We compared two imputation methods for
handling interval-censored data: midpoint and random imputation. The simulation results indicated
that random imputation outperformed midpoint imputation, yielding smaller SE and RMSE values
at most levels of censoring proportion and across different sample sizes. Finally, we analyzed a real
dataset on oral lesion development after liver transplantation for illustrative purposes. The results
demonstrated a good fit of the bathtub hazard model to the data, highlighting its potential relevance
in medical research and clinical practice. Future research may explore other imputation approaches,
such as conditional mean, conditional median, or multiple imputation. Furthermore, we expect that
the extended model will find broader applications in medical research and related fields.
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Методи iмпутацiї для моделi ризику “ванна” з даними
з правосторонньою та iнтервальною цензурою
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У цьому дослiдженнi розширено двопараметричну модель ризику типу “ванна”, яка
демонструє або зростаючий, або ванноподiбний коефiцiєнт вiдмов залежно вiд па-
раметра форми. Модель доповнено включенням коварiат за умов наявностi даних,
цензурованих правосторонньо та iнтервально. Для обробки iнтервально цензурова-
них даних застосовано два методи iмпутацiї: серединну та випадкову. Було проведено
iмiтацiйне моделювання для оцiнки та порiвняння ефективностi цих методiв iз вико-
ристанням стандартної помилки (SE) та середньоквадратичного вiдхилення (RMSE).
Результати показали, що випадкова iмпутацiя в бiльшостi випадкiв перевершує се-
рединну, забезпечуючи нижчi значення SE та RMSE за рiзних рiвнiв цензурування
та розмiрiв вибiрки. Щоб продемонструвати практичну застосовнiсть розширеної мо-
делi, було використано реальний набiр даних про виникнення уражень ротової по-
рожнини у дiтей пiсля трансплантацiї печiнки.

Ключовi слова: ванноподiбний; правосторонньо цензурований; iнтервально цензу-

рований; iмпутацiя; середня точка; випадковий.
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