COMPUTER DESIGN SYSTEMS. THEORY AND PRACTICE
Vol. 7, No. 2, 2025

Ruslan Holovatskyy

Computer Design Systems Department, Lviv Polytechnic National University, 12, S. Bandery str., Lviv,
Ukraine, E-mail: ruslan.i.holovatskyi@Ipnu.ua, ORCID 0009-0001-3096-1115

RESEARCH OF THE EFFICIENCY OF CODE GENERATION BY THE
ARDUINO IDE DEVELOPMENT ENVIRONMENT USING THE
EXAMPLE OF ARITHMETIC OPERATIONS OF ADDITION AND
SUBTRACTION

Recieved: September 01, 2025 / Revised: September 09, 2025 / Accepted: September 15, 2025
© Holovatskyy R., 2025
https://doi.org/10.23939/cds2025.02.030

Abstract. This article examines the efficiency of code generation by the Arduino IDE
development environment when performing elementary arithmetic operations of addition and
subtraction. This environment is a popular tool among developers for working with microcontrollers,
as it has a convenient interface for rapid prototyping. One of the key characteristics of such
environments is the quality of the generated code, which affects the speed of program execution,
memory usage, and overall system performance. Therefore, studying the efficiency of code generation
by the specified development environment is a relevant task. This study analyzes performance,
memory usage, and code optimization by the compiler. Experimental results are presented and con-
clusions are drawn regarding the feasibility of using the environment for tasks with high performance
requirements.

Keywords: Arduino IDE, code generation, efficiency, arithmetic operations, addition,
subtraction, microcontrollers, AVR, firmware file.

Introduction

Arduino IDE is one of the most popular development environments for programming various
microcontrollers used in the Arduino hardware platforms [1]. Today, the Arduino hardware platforms include
the following families: Arduino Nano, Arduino MKR, Arduino Mega, and Arduino Classic.

The Arduino Nano family is a set of miniature boards with a lot of features. It ranges from the
inexpensive basic Nano Every to the multi-functional Nano 33 BLE Sense / Nano RP2040 Connect with
Bluetooth® / Wi-Fi® radios. These boards also have a set of built-in sensors such as temperature/humidity,
pressure, gesture recognition, microphone, etc.

The Arduino MKR family is a series of boards, shields, and carriers that can be combined to create
fairly complex projects without any additional circuitry. Each board is equipped with a radio module (except
the MKR Zero) that supports Wi-Fi®, Bluetooth®, LoRa®, Sigfox®, NB-loT communication. All boards
in the family are based on the low-power 32-bit Arm® Cortex®-MO processor SAMD21 and are equipped
with a cryptographic chip for secure communication.

The Arduino Mega family is a board for projects based on AVR microcontrollers that require a lot of
processing power and a large number of GPIO pins.

The Arduino Classic family is a classic family of boards based on AVR microcontrollers, ranging
from the legendary Arduino UNO to boards such as Leonardo & Micro.

Despite the variety of Arduino boards, the Arduino IDE provides a user-friendly interface for writing,
compiling, and uploading code without requiring a deep understanding of the low-level details of the
microcontroller. This allows even beginners to quickly create their own projects using sensors, actuators,
displays, and other electronic components.

30

Research of the Efficiency of Code Generation by the Arduino IDE Development...

Review of Modern Information Sources on the Subject of the Paper

The Arduino hardware platform [1] based on AVR microcontrollers [2] is widely used for educational
purposes [3-5]. It also allows you to create interesting and quite complex projects that are used by enthusiasts
around the world in everyday life [6-9]. Many developers use the Arduino platform not only for learning,
but also as a tool for creating more complex systems or even as a replacement for expensive devices and
machines [10-12]. For programming and rapid prototyping, the Arduino IDE development environment [1]
is usually used, which already contains ready-made libraries. However, the question arises: how effectively
does this environment generate code? Therefore, studying the efficiency of code generation by the
aforementioned development environment, which will answer the question posed, is a relevant task. This
article investigates the efficiency of code generated by the Arduino IDE, using the example of elementary
arithmetic operations of addition and subtraction, which are the basis of any serious project.

Problem Statement

After analyzing a large number of Arduino projects, it can be noted that, despite its convenience, the
Arduino IDE does not always generate optimal machine code. Microcontrollers used in Arduino platforms
have limited resources, in particular, a small amount of FLASH memory for storing the program, limited
random access memory (RAM) and a relatively low clock frequency [2]. Because of this, a large and
unoptimized program can lead to crashes, slow down the device, or even lack of memory to perform basic
operations.

In addition, the performance of the device depends not only on the characteristics of the
microcontroller, but also on the quality of the written code. Some standard functions used in the Arduino
IDE (for example, digitalWrite() or delay()) greatly simplify programming, but are slower than direct access
to the microcontroller registers. The use of inefficient algorithms, inappropriate data types, incorrect and
inefficient variable descriptions or excessive function calls can lead to unnecessary memory usage and delays
in program execution.

That is why studying the efficiency of code generation by the Arduino IDE development environment
with the aim of further optimizing it plays a key role in developing efficient programs for microcontrollers.
Efficient code allows you to reduce memory usage, increase data processing speed, and extend the battery
life of the device, which is especially important for power-dependent projects.

By efficient code we mean code that performs the assigned tasks with minimal resource consumption,
such as processor time, memory, and power consumption, without losing clarity, readability, and
maintainability [13, 14].

The main characteristics of effective code include the following:

1. Performance — the code runs quickly, minimizing unnecessary operations and function calls.

2. Optimal memory usage — excessive consumption of RAM and FLASH memory is avoided.

3. Readability and maintainability — the code is well-structured, understandable to other developers
and easily adaptable to new requirements.

4. Compactness — code duplication is avoided, efficient algorithms are used.

5. Modularity — the code is divided into independent functional blocks, which simplifies its
modification and testing.

6. Balance between speed and resource consumption —a compromise between performance and energy
saving is achieved, which is important for embedded systems.

In the context of Arduino, efficient code allows the device to run faster, more stable, and more
economically using the microcontroller’s limited resources. In the case of power supply from an autonomous
power source, the operating time of the developed microcontroller system, which runs under the control of
optimized software code, increases.

For AVR microcontrollers used in the Arduino Nano, Arduino Mega and Arduino Classic families,
and operating at frequencies up to 20 MHz, in the vast majority of projects [6-12], the amount of available
memory is crucial: both FLASH for storing code and RAM. Therefore, in this study, the main focus is on
the size of the generated code.

31

Ruslan Holovatskyy

Main material presentation

To investigate the efficiency of code generation by specialized development environments for the
AVR architecture using the example of elementary arithmetic operations of addition and subtraction, we will
use Arduino IDE version 2.3.4. As a hardware platform for research, we will choose the classic Arduino
UNO R3 board, Fig. 1.

Fig. 1. The Arduino UNO R3 board under study

Addition operation. First, we will find the most optimal implementation of the addition operation on
integer variables of type byte. The byte data type occupies 1 byte in memory, accepts values: 0-255
(unsigned integers). To do this, we will determine the size of the code generated by the Arduino IDE for the
following ways of performing this operation:

1. Local variables without additional functions.

2. Global variables, an addition function without parameters and without returning a result.

3. Global variables, an addition function without parameters with returning a result.

4. Global variables, an addition function that accepts arguments and returns a result.

5. Local variables, an addition function that accepts arguments and returns a result.

A sketch that implements the addition operation of two variables of type byte using local variables
and without additional functions is shown in Fig. 2.

@ PrgAddByte | Arduino IDE 2.3.4 = [m] X
File Edit Sketch Tools Help

- y L -

PrgAddByte ino

[

// BapiaHT Ml. BMKOPWUCTaHHA NOKaNbHWMX 3MiHHMX Ge2 foaaTkoBMx QyHKUIMA.

void setup() {
byte x1 = 25;
byte x2 = 39;
byte y = x1 + x2;
}

void loop() {
¥

P ®0o~NouhWwN

e

I
o

Qutput Serial Monitor

Sketch uses 1394 bytes (4%) of program storage space. Maximum is 32256 bytes.
Global variables use 9 bytes (0%) of dynamic memory, leaving 2039 bytes for local variables. Maximum is 2048 bytes.

Fig. 2. The operation of adding two variables of type byte using local variables
and without additional functions

32

Research of the Efficiency of Code Generation by the Arduino IDE Development...

As can be seen from Fig. 2, the size of the firmware file, without the bootloader, takes up 1394 bytes
out of 32256 available bytes for the ATMega328P microcontroller. This is approximately 4.32 % of the
available FLASH memory. For the ATMegal6 microcontroller, which has 16128 bytes of FLASH memory
available, this will be approximately 8.64 % of the available memory. And for the ATMega8 microcontroller,
which has 8064 bytes of FLASH memory available, this will be approximately 17.3 % of the available
memory. With the bootloader, this percentage will already be 23.5 % of the available FLASH memory.

A sketch that implements the operation of adding two variables of type byte using global variables
and the addition function without parameters and without returning the result is shown in Fig. 3.

PrgAddByte | Arduino IDE 2.3.4 = [m] X
File Edit Sketch Tools Help

PrgAddByte.ino

1 // BapiaHT W2. BWUKOPWUCTaHHA rn0DanbHUX 3MiHHKX.
// oyHkuia nonaBaHHA 6e3 napameTpie i 6e3 noeepHeHHA pe3ynbTaTy (Mpouenypa).

byte x1, x2, Y;

void setup() {
x1 = 25;
x2 = 39;
9 Add ()3
1}

12 void loop() {
13}

15 void Add () {
16 | Y=x1+x2
17}

Qutput Serial Monitor = &

Sketch uses 1412 bytes (4%) of program storage space. Maximum is 32256 bytes.
Global variables use 12 bytes (o%) of dynamic memory, leaving 2636 bytes for local variables. Maximum is 2048 bytes.

Fig. 3. The operation of adding two variables of type byte using global variables
and the addition function without parameters and without returning a result

A sketch that implements the operation of adding two variables of type byte using global variables
and the add function without parameters but returning the result is shown in Fig. 4.

PrgAddByte | Arduino IDE 2.3.4 — o X
File Edit Sketch Tools Help

PrgAddByte.ino

1 // BapiaHT N3. BHKOPMCTaHHA r06aibHUX 3MIHHMX.
// ®yukuia ponaBaHHA Ge3 napameTpiB ane 3 MOBEpHEHHAM pe3ynbTaTty.

byte x1, x2, Y;

void setup() {
x1 = 25;
x2 = 39;
9 Y = Add ();
0)

12 void loop() {
13}

15 byte Add () {
16 ‘ return (x1 + x2);
17

Qutput Serial Monitor = =

Sketch uses 1412 bytes (4%) of program storage space. Maximum is 32256 bytes.
Global variables use 12 bytes (0%) of dynamic memory, leaving 2036 bytes for local variables. Maximum is 2048 bytes.

Fig. 4. The operation of adding two variables of type byte using global variables
and the addition function without parameters but returning the result

33

Ruslan Holovatskyy

As can be seen from Fig. 3, the size of the firmware file, without the bootloader, takes up 1412 bytes
out of 32256 available bytes for the ATMega328P microcontroller. This is approximately 4.38 % of the
available FLASH memory. For the ATMegal6 microcontroller, which has 16128 bytes of FLASH memory
available, this will be approximately 8.75 % of the available memory. And for the ATMega8 microcontroller,
which has 8064 bytes of FLASH memory available, this will be approximately 17.51 % of the available
memory. With the bootloader, this percentage will already be 23.74% of the available FLASH memory.

As can be seen from Fig. 4, the size of the firmware file, without the bootloader, takes up 1412 bytes
out of 32256 available bytes for the ATMega328P microcontroller. This is approximately 4.38 % of the
available FLASH memory. For the ATMegal6 microcontroller, which has 16128 bytes of FLASH memory
available, this will be approximately 8.75 % of the available memory. And for the ATMega8 microcontroller,
which has 8064 bytes of FLASH memory available, this will be approximately 17.51 % of the available
memory. With the bootloader, this percentage will already be 23.74 % of the available FLASH memory.
This implementation of the operation of adding by the size of the firmware file is completely similar to the
previous one, shown in Fig. 3.

A sketch that implements the operation of adding two variables of type byte using global variables
and an addition function that accepts arguments and returns a result is shown in Fig. 5.

PrgAddByte | Arduino IDE 2.3.4 = [m] X
File Edit Sketch Tools Help

PrgAddByte ino

1 // BapiaHT W4. BMKODPUCTaHHA rN0OAnbHUX 3MiHHMX.
// OyHKUiA NONaBaHHA, AKa NpUIMaE aprymeHTH Ta MOBepTaEe pesyfbTar.

byte x1, x2, Y;

void setup() {
x1 = 25;
X2 = 39;
9 Y = Add (x1, x2);
10)}
11
12 void loop() {
13}
14
15 byte Add (byte fx1, byte fx2) {
16 ‘ return (fx1 + fx2);
17}

0N oW A WN

Output Serial Monitor =5

sketch uses 1428 bytes (4%) of program storage space. Maximum is 32256 bytes.
Global variables use 12 bytes (@%) of dynamic memory, leaving 2036 bytes for local variables. Maximum is 2048 bytes.

Fig. 5. The operation of adding two variables of type byte using global variables
and an addition function that accepts arguments and returns the result

As can be seen from Fig. 5, the size of the firmware file, without the bootloader, takes up 1428 bytes
out of 32256 available bytes for the ATMega328P microcontroller. This is approximately 4.43 % of the
available FLASH memory. For the ATMegal6 microcontroller, which has 16128 bytes of FLASH memory
available, this will be approximately 8.85 % of the available memory. And for the ATMega8 microcontroller,
which has 8064 bytes of FLASH memory available, this will be approximately 17.71 % of the available
memory. With the bootloader, this percentage will already be 23.93 % of the available FLASH memory!
This implementation of the operation of adding by the size of the firmware file is the worst of all those
studied within the framework of this work.

A sketch that implements the operation of adding two variables of type byte using local variables and
an addition function that accepts arguments and returns the result is shown in Fig. 6.

As can be seen from Fig. 6, the size of the firmware file, without the bootloader, takes up 1426 bytes
out of 32256 available bytes for the ATMega328P microcontroller. This is approximately 4.42 % of the
available FLASH memory. For the ATMegal6 microcontroller, which has 16128 bytes of FLASH memory

34

Research of the Efficiency of Code Generation by the Arduino IDE Development...

available, this will be approximately 8.84 % of the available memory. And for the ATMega8 microcontroller,
which has 8064 bytes of FLASH memory available, this will be approximately 17.68 % of the available
memory. With the bootloader, this percentage will already be 23.91 % of the available FLASH memory.

PrgAddByte | Arduino IDE 2.3.4 = [m] X
File Edit Sketch Tools Help

- Y LA -

PrgAddByte ino

1 // BapiaHT MNS5. BUKOPUCTaHHA NOKANLHUX 3MiHHKX.
// oyukuia nopaBaHHA, AKa NPUHMAE apryMeHTM Ta MOBepTaE pe3ynbTar.

2

3

4 void setup() {

5 byte x1, x2, Y;
6 x1=25;

7 x2=39;

8 Y = Add (x1, x2);
9 }

11 void loop() {
14 byte Add (byte fx1, byte fx2) {

15 return (fx1 + fx2);
6)}

ul
(]

QOutput Serial Monitor

Sketch uses 1426 bytes (4%) of program storage space. Maximum is 32256 bytes.
Global variables use 9 bytes (0%) of dynamic memory, leaving 2039 bytes for local variables. Maximum is 2048 bytes.

Fig. 6. The operation of adding two variables of type byte using local variables
and an addition function that accepts arguments and returns the result

Let us present the obtained results in the form of a bar chart for the convenience of their visual
comparison (Fig. 7).

Options for implementing the addition operation

) 14z=s
1430 B Local variables without additional
3 funetions

1420
- B Global variables, addition function
= without parameters and without refurn
21410 result
- —
¥ ® Global variables, addition function
\—; 1400 without parameters with retirn result
£
.’51 1390 | B Global variables, addition finction that
2 takes arguments and returns result
= s

1380 [M Local variables, addition function that

takes arguments and returns result
1370

(Byte) Y =x1 +x2

Fig. 7. Size of the MK firmware file without a bootloader for different ways
of performing the operation of adding two byte type variables

From the conducted research it is clear that for the operation of adding two single-byte variables, the
Arduino IDE generates a firmware code of a minimum size of 1394 bytes when using local variables without
using additional functions. Therefore, in the future, for our experiments, we will use exactly this variant of
implementing an elementary operation.

Now let's see how the size of the generated code depends on changing the data type from byte to int.
Int is an integer type of 16-bit signed numbers in the range: —32 768-32 767, occupies 2 bytes in memory

35

Ruslan Holovatskyy

for Arduino UNO R3 boards (for ESP8266 / ESP32 — 4 bytes). A sketch that implements the operation of
adding two variables of type int using local variables and without using additional functions is shown
in Fig. 8.

PrgAddint | Arduino IDE 2.3.4 — o x
File Edit Sketch Tools Help

PrgAddint.ino

[

void setup() {

2 int x1 = 12155;

3 int x2 = 20688;

a int Y = x1 + x2;

5 b

6

7 void loop() [{ |

8

o I
Output = o

Sketch uses 1418 bytes (4%) of program storage space. Maximum is 32256 bytes.
Global variables use 9 bytes (@%) of dynamic memory, leaving 2039 bytes for local variables. Maximum is 2048 bytes.

Fig. 8. The operation of adding two variables of type int

Now let’s replace the int data type with long. Long is a 32-bit integer type of signed numbers in the
range: —2 147 483 648-2 147 483 647, occupies 4 bytes in memory for Arduino UNO R3 boards. A sketch
that implements the operation of adding two variables of type long using local variables and without using
additional functions is shown in Fig. 9.

PrgAddLong | Arduino IDE 2.3.4 = [m] X
File Edit Sketch Tools Help

PrgAddLong.ino

[

void setup() {
long x1 = 1873741819;
long x2 = 1073741824;
long Y = x1 + x2;

}

void loop() {

0o N OV R W N

}

1
m

Qutput

Sketch uses 1456 bytes (4%) of program storage space. Maximum is 32256 bytes.
Global variables use 9 bytes (@%) of dynamic memory, leaving 2039 bytes for local variables. Maximum is 2048 bytes.

Fig. 9. The operation of adding two variables of type long

As can be seen from Fig. 8, the size of the firmware file, without the bootloader, takes up 1418 bytes
out of 32256 available bytes for the ATMega328P microcontroller. This is approximately 4.39 % of the
available FLASH memory. For the ATMegal6 microcontroller, which has 16128 bytes of FLASH memory
available, this will be approximately 8.79 % of the available memory. And for the ATMega8 microcontroller,

36

Research of the Efficiency of Code Generation by the Arduino IDE Development...

which has 8064 bytes of FLASH memory available, this will be approximately 17.58 % of the available
memory. With the bootloader, this percentage will already be 23.81 % of the available FLASH memory.
As can be seen from Fig. 9, the size of the firmware file, without the bootloader, takes up 1456 bytes
out of 32256 available bytes for the ATMega328P microcontroller. This is approximately 4.51 % of the
available FLASH memory. For the ATMegal6 microcontroller, which has 16128 bytes of FLASH memory
available, this will be approximately 9.03 % of the available memory. And for the ATMega8 microcontroller,
which has 8064 bytes of FLASH memory available, this will be approximately 18.06 % of the available
memory. With the bootloader, this percentage will already be 24.3 % of the available FLASH memory.
Subtraction operation.Now let’s examine the efficiency of Arduino IDE code generation for the
subtraction operation using the example of using local variables and without using additional functions.
The sketch that implements the subtraction operation of two byte variables is shown in Fig. 10.

PrgSubByte | Arduino IDE 2.3.4 = (m] X
File Edit Sketch Tools Help

PrgSubByte.ino

1 void setup() {
byte x1 = 39;
byte x2 = 25;
byte Y = x1 - x2;

}

void loop() {
5

W~ BswN

I
>

Output Serial Monitor

Sketch uses 1398 bytes (4%) of program storage space. Maximum is 32256 bytes.

Global variables use 9 bytes (©%) of dynamic memory, leaving 2039 bytes for local variables. Maximum is 2848 bytes.

Fig. 10. Subtraction operation of two byte type variables

As can be seen from Fig. 10, the size of the firmware file generated by the Arduino IDE version 2.3.4
environment, without the bootloader, takes up 1398 bytes out of 32256 available bytes for the ATMega328P
microcontroller. This is approximately 4.33 % of the available FLASH memory. For the ATMegal6
microcontroller, which has 16128 bytes of FLASH memory available, this will be approximately 8.69 % of
the available memory. And for the ATMega8 microcontroller, which has 8064 bytes of FLASH memory
available, this will be approximately 17.34 % of the available memory. With the bootloader, this percentage
will already be 23.56 % of the available FLASH memory.

The sketch that implements the subtraction operation of two int variables is shown in Fig. 11.

As can be seen from Fig. 11, the size of the firmware file is 1422 bytes. This is approximately 4.41 %
of the available FLASH memory for the ATMega328P microcontroller. For the ATMegal6 microcontroller,
which has 16128 bytes of FLASH memory available, this will be approximately 8.82 % of the available
memory. And for the ATMega8 microcontroller, which has 8064 bytes of FLASH memory available, this
will be approximately 17.63 % of the available memory. With the bootloader, this percentage will already
be 23.86 % of the available FLASH memory.

The sketch that implements the subtraction operation of two long variables is shown in Fig. 12.

37

Ruslan Holovatskyy

PrgSublnt | Arduino IDE 2.3.4 _ o %
File Edit Sketch Tools Help

PrgSubint.ino

[

void setup() {
int x1 = 20608;
int x2 = 12155;
int ¥ = x1 - x2;

H

void loop() {

e e]

}

Quiput = o

Sketch uses 1422 bytes (4%) of program storage space. Maximum is 32256 bytes.
Global variables use 9 bytes (%) of dynamic memory, leaving 2039 bytes for local variables. Maximum is 2e48 bytes.

Fig. 11. The operation of subtracting two variables of type int

PrgSublong | Arduino IDE 234 - [m] x
File Edit Sketch Tools Help

PrgSublLong.ino

[

void setup() {
long x1 = 1073741824;
long x2 = 1873741819;
long ¥ = x1 - x2;

}

void loop() {

[N« TV R STV N

}

Output = 5
Sketch uses 1480 bytes (4%) of program storage space. Maximum is 32256 bytes.

Global variables use 9 bytes (%) of dynamic memory, leaving 2039 bytes for local variables. Maximum is 2048 bytes.

Fig. 12. Subtraction operation of two variables of type long

As can be seen from Fig. 12, the size of the firmware file generated by the Arduino IDE version 2.3.4
environment, without the bootloader, takes up 1480 bytes. This is approximately 4.59 % of the available
FLASH memory for the ATMega328P microcontroller. For the ATMegal6 microcontroller, this will be
approximately 9.17 % of the available memory. And for the ATMega8 microcontroller, respectively, 18.35
%. With the bootloader, this percentage will already be 24.58 % of the available FLASH memory.

Microcontroller firmware file. An example of a firmware file generated by the Arduino IDE version
2.3.4 development environment without a bootloader and without optimization, with a size of 1394 bytes,
compatible with Arduino Classic microcontrollers for the operation of adding two single-byte variables using
local variables and without using additional functions is shown in Fig. 13.

38

Research of the Efficiency of Code Generation by the Arduino IDE Development...

=] ProAddByte ino hex rﬂ

000Cc9434000c9451000Cc9451000Cc94510049
000C%451000C9451000C5451000C945100
000C5451000C9451000C5451000C%451000C
000C9451000c9451000Cc9451000C945100FC
)000C949D000C9451000C9451000C945100R0
000Cc5451000C€9451000€5451000C545100DC
000C5451000C94510011241FBECFEFDBEQZE
OODEBFCDBF11EOAQOEOBLEOE2E7F5E002C0F5
0005%00DS2A030B107DIF721EOAQEOBLED
0001C01DS2A930B207ELF70ES48A000C94BA
00B7020C940000CF93DF9300D01F92CDB7LE
OODEB789E1898387E28A8399818A81890F02
008B830FS00F300FS0DFS1CF910895CFS37¢
O0ODFS3CDB7DEBTDFY1CF910895CF93DF9354
0000DOCDB7DEB79A83898380E090E00F900F
000F%0DFY91CF210895CFY3DF93CDBTDEBT 07
O00ODF91CF910895CF93DFS3CDB/DEBTDF9125
00CF910895CF93DFY3CDB7DER70ES422022F
000E947CO00E2453000E94670080E090E0
00892BD1F30ES40000F7CF1F920FS20FB6&
000F5211248F939F93AF93BF93CF93DF93
00CDB7DEB72597DEBFCDBF80910401909162
J000501A0910601B091070189839A83ABE3E]
00BCE3805108018DE389819A51ABE1BCE1
000196A11DB11D89839A83AB33BCE38DE1AE

w N

000B0910301019¢A11DB11D80930001909370C
0000101A0930201B09303010F900FS00F90A3
JO000F900F90DFS1CFY1BF91AF919F918F910
O0OF900FBEOF201F%01895CF93DF9300D0T
0000D01FS2CDB7DEB78FES90EOFCO1B0815
008983F8948091040190910501A09106015
00B02107018A339BE3ACE3BD338FES90E0ET
J002981FC0120838A819BE1ACE1BDE1BCO105S
00CDO10FS00FS00FS00F900F90DFS1ICFI1D5
000895CF93DF9300D000D000D0CDBTDERT &
O0OBFE590EOFC0180818D83F89480910001DE
0090910101A0910201B091030189839A5
JOOABB3BCE386E490EOFCO180318E8385E35(
0090EOFC018031882F90E081709927892B44
0071F08BEB18F3F59F089819A81ABS1BCE11Y
000196A11DB11D89839A83ABS 3BCE3BFESEL
0090E02DE81FC01208389819A81ABEB1BCE1C2
0002227382F492F5A2FBEE1882F90E0AOEDS
00OBOEO820F931FA41FB51F880F991FAALFG
00BB1F880F991FAAIFBBIFBCOICDO12696CA
O0OQFB&F894DEBFOFBECDBFDF21CF91089519
00EF92FF920F931F93CF93DFY93CDBTDEBT 6L
0028970FB6FB894DEBFOFBECDBF6DE 3TES 356
008F8398870E943901DCO1CBO189839A8
O0OABS3BCE8337C0O0E%4B00217C08DE19ES1L

008D5FBDE38DE18D3770F08DE18D578DE32F
0089819A81ABS1BCE10156A11DB11DB98352
009AS3ABE3BCE38DE18093080189319A81¢6¢C
CO0O0ABB1BCE18093040190930501A09306014E
DO0O0B09307018091000190910101A09102016R

00BB85892BBA2BBB2BA9F00E9439019BO1EL
00AC0189819AC1ABE1BCE179018A01EBLAFE

[ProAddByte ino hex E3

61 000F90A0AOB1BOBDB01CT701883E9340A1050F
62 DO0OBLUS60F6BDE19ESIAFE1BBE5892BBAZBIE
€3 EO0O8B2B09F628960FBECF894DERFOFBECDBES

64 FOOODF91CF911F910F91FF90EF200895CF93D0
65 000ODFS9300D0OCDB7DEB79A83898389819A8143
66 000029798F089819A51880F991F880F991FES
67 20009A83893389819A8105979A83898389381AF

30009A810197F1F79A8389830F900F20DF914
000CFY910895CF93DF93CDBT/DER7789484E44E
00090EOFC01208184E490E02260FC01208394
600084E490E0FC01208184E490E02160FC01C0
0208385E490E0FC01208185E490E0226007
0FC01208385E490E0FC01203185E490E07C
02160FC0120838EE690EOFC0120818EE645
090E02160FC01208381E890E0FC01108253
00081EB90EOFC01208181E890E02260FC01ED
0208381E390EOFC01208181E5390E0216028
DOOOFCO1203380E890EOFC01208180E890E02E
0002160FC01208381EB90EOFC01208181ERBOS
00090E02460FC01208380EBO90EOFC012081EF
J00080EB90E02160FC0120838AE790E0FCOL11
00020818AE790E02460FC0120338AE790E054
’000FC0120818AE790E02260FC0120838AETRY
300090EOFC0120818AE790E021€0FC012083LE
J008AE790EOFC0120818AE790E02068FCOLCE
000208381EC90EOFC011082DF91CF9108951F
H ,000CF93DF93CDB7/DERT/DFY1CF910895F894L5
:02057000FFCFEB
:00000001FF

o]

- o

Fig. 13. Firmware file without a bootloader and without optimization for the operation
of adding two single-byte variables using local variables and without using additional functions

An example of a firmware file generated by the Arduino IDE version 2.3.4 development environment
with a bootloader without optimization, with a size of 1896 bytes, compatible with Arduino Classic
microcontrollers for the operation of adding two single-byte variables using local variables and without using
additional functions is shown in Fig. 14.

As can be seen from Fig. 14, the size of the bootloader occupies 502 bytes in FLASH memory. This
is approximately 1.56 % of the available FLASH memory for the ATMega328P microcontroller. For the
ATMegal6 microcontroller, this will be approximately 3.11 % of the available memory. And for the
ATMega8 microcontroller, respectively, 6.21 %.

Ways to improve code efficiency.First of all, to improve the efficiency of code written for the Arduino
platform, based on and within the framework of the research conducted, the following steps can be suggested:

39

Ruslan Holovatskyy

[PraAddByte ino with_bootioader hex E3

B:020000040000FA

)0000Cc9434000Cc9451000Cc9451000C94510049
000c9451000Cc9451000Cc%451000C945100
000c9451000Cc9451000Cc%451000C9451000C
000Cc9451000Cc9451000Cc9451000C945100FC
000Cc949D000C9451000C%451000C945100A0
000Cc9451000Cc9451000Cc%451000C945100DC
000Cc9451000Cc94510011241FBECFEFD8ED
OODEBFCDBF11lEOAQOEOBLEOE2E7F5E002C0
0005900D92A030BL07D9F721E0AOEOBLED
0001C01D92A930B207ELF70E948A000CY94ER
00B7020C940000CF93DF9300D01F92CDRBT1E
OODEB789E1898387E28A8399318A31890F02
008BE30F900F200F90DFY91CF910895CF937¢
OODF93CDB7DEB7DFY91CF910895CF93DF9354
00000DOCDB7DEB79A83893380E090E00F90CF
000QF90DF91CF910895CF93DF93CDRBTDERT 07
JO00DF91CF910895CF93DF93CDB7DERTDF9125
000CF910895CF93DF93CDBTDEBTOES422022F
’0000E247C000E2453000E94670080E090E0E
J00892BD1F30E940000F7CF1F920F920FB6CH
000F9211248F939F93AF93BF93CF93DF931D
000CDB7DEB72597DEBFCDBF80951040190%16A
000501R0910601B091070189839A83ABE3
00BC83809108018D5389819A81AB31BCE]
000196A11DB11D89839A8 3ABS3BCE 38D 1AS
008D5FBD338D318D3770F08D818D578DE32F
0089819A81ABS1BC310196A11DB11DB98392
009AB3ABS3BCE38D318093080189819A81¢6¢
00AB81BC318093040190930501A093060142

= PrgAddByteno.with_boctioaderhex £

6l

00AC0189819A31AB31BC3179018A01EBIAFR
00F90A0AOB1BOBDBOICT01883E9340A1050F
00B1l0560Fe8D319E31AF31B835892B8A2BI
008B2B09F628960FB6F894DERFOFBECDEF
O0ODF91CF911F910F91FFS0EF900895CF93
00ODF9300D0CDB7DEB79A33893389319A8143
00029798F089319A31880F991F880F991FFD
009AB3898389819A8105979A8389838981AF
009AB10197F1F79AB389330F900F90DF914A
00CF910895CF93DF93CDBTDEB7789484E44F
4500090E0FC01205184E490E02260FC01208394
€00084E490E0FC01208184E490E02160FC0O1CO
D00208385E490E0FC01208185E490E02260
00FC01208385E490E0FC01208185E490E07C
0021&0FC0120838EEC90EOFCO120818EEG45
0090E02160FC01208381ES890E0FC01108253
0081lES90EOFCO1208181E890E02260FCOL
00208381EB90EOFC01203181EB90E02160
000FC01208380ES90EOFC01203180E890E02E
0002160FC01203381ERS0EOFCO1203181EBOS
D0090E02460FC0O1208380ER90EOFCO12081EF
0080EB90E02160FC0120338AETS0EOFCOLLL
0020818AE790E02460FC0120338AET90E054
00FC0120318AET790E02260FC0120338AE7
0090EOFC0120318AE790E02160FC012083
00BAE790EOFC0120818AET790E02068FCO1CE
00208381EC90EOFC011082DF91CF9108951F
00CF93DF9%3CDBTDEBTDFS1CF910895F894L5
O0OFFCFEB
000112484B714BEBL1FFFODOB5E080938100F7

110

[ProAddByte.ino with_boctloader hex E3

3l

32

60

:1001D000B09307018091000190910101A0910201¢6E

001 0B09103010196A11DB11D80930001909370
00101A0930201B09303010F200F900F90A3
00F200F20DFY91CF91BF91AF919F918FO1!
00F900FBEOF901F901895CF93DF9300D0
000D01F92CDB/DEB7BFES90EOFC01808152
08933F8948091040190910501A0910601B1
0B0%107018A839B53ACE3BDE38BFES90E0ET
02981FC0120838A519B51ACE1BDE1BCO10S
0CDO10F900F200F900F900F90DFS1CF91D5
008%5CF93DF9300D000D000DOCDB7DERT 24
0BFES590EOFC01805818D53F89480910001DE
090910101A0910201B091030189839A83
OABE3BCE386E490EOFCO180818EB385E3%90
090EQOFC018031882F90E081709927892B44
071F08EZ18F3F59F089519A81AB31BCE112
00196A11DB11D89539A83ABS3BCE38FESEL
090E02D21FC01208389819A81AB31BCE1C2
02227382F492F5A2F8ES1882F90E0AQEDNYY
OBOEO820F931FA41FB51F880F991FARLIFGE
OBBlF880F991FAAIFBBIFBCOICD012696CA
OQOFBEF894DEBFOFBEECDBFDF91CF91089519
OEF92FF920F931F93CF93DF93CDB7DEBT6A
028970FB6F894DEBFOFBECDBF6DB3TEB3RE
0BF2398870E943901DCOICBO189839A83EE
OABS3BCE337C00ES4B00217CO8DE19ESLID]
J00AF31B8350197A109B1098DE39ES3AFE3E]
0B82789819A81ABS1BCE188519C4FAF4FDE
OBF4F89839A83ABS3BCE38DS19EB1AFE15C
0B885892B8A2B8B2BASFO0ES439019B01ED

[ProAddByte ino.with_bootioader.hex E3

91

:107E100082E08093C00088E18093C10086E0809377
TE2000C20080E18093C4008EEOCID0259A86E02C
J0020E33CEF91E0309385002093840096BBD3
4000BOSBFECF1D9AAB958150A9F7CC24DD24C4
10088248394B5EOAB2EALE] SA2EF3EOBF2EET
OAR2D0813461F49FD00B2FAFD0023811F036
0013511F484E001C0O83E08DD0O8ICO8234EL
00011F484E103C0853419F485E0A6D080C0OES
0853579F488D0EB2EFF2485D0082F10EQRE
D00102F00270E291F29000F111F8EDO6E801
06FC0863521F484E090D080EODECE843¢
009F040C070D06FD0082F6DD0BOEOCB1 G
J00B0E7D80&18F4F601B7BEEBI5COEODLIEO L7
E00062D089930C17ELFT7FOEOCF16FOETDFO6DE
00018FOF601B7BEEB9568D007B600FCFDCFD4
000A601A0EOBLIE(O2C9130E011968C911197C0
D0090E0982F8827822B932B1296FA010C0160
J0087BEE89511244E5F5F4FF1EOAQ038BF07 50
D0051F7F601ATBEEB9507B600FCFDCFO7RBE4 G
4000E89526C08437B1F42EDO2DD0OF82E2BD052
D003CDOF601EF2C8F010F5F1F4F84911BD0OY7
OERS4F801CLF70894C11CD1ICFAS4CFOCL:
0D11COEC0853739F428D08EELO0CDO85EIAC
00ADOBFE(O7ACF813511F488E018D01DD0ET
080E101D065CF982FB091C00085FFFCCFY4
09093C60008958091CO00087FFFCCF809112
0c00084FD01COAB958091C6000895E0EG4T
OFQ0ED98E1908380830895EDDF803219F02E
J0088EOF5DFFFCF84EIDECF1F93182FE3DFCA
EOO01150E9F7F2DF1F91089580E0EBDFEE2TFE
47FFO00FF270994CA
27FFE00040479
D0000001FF

=

Fig. 14. Firmware file with a bootloader without optimization for the operation
of adding two single-byte variables using local variables and without using additional functions

1. Use variables effectively. You need to use the correct data types, namely byte (0-255) instead of
int if the variable does not exceed this range or int instead of long. Uint8_t, uint16_t, uint32_t instead of int
if unsigned numbers are required. Bool instead of int if the variable only accepts true or false. Const or
#define for immutable values to avoid wasting RAM.

2. Reduce the use of float data type. Working with float data type slows down code execution and
takes up more memory. It is advisable to use integers, for example, multiply by 100 and work with int type
if precision to two digits is required.

3. Choose the optimal way to store strings, for example char array[] consumes less memory than
String. Use F() to store strings in FLASH memory:

Serial.printIn(F(“This text will be stored in FLASH memory, not RAM!”));

4. The Arduino IDE also has an internal code optimizer that you can use to optimize your sketch. Let's
demonstrate how it optimizes our code for byte data types (Fig. 15).

40

Research of the Efficiency of Code Generation by the Arduino IDE Development...

@ ProAddByte | Arduino IDE 234 ~ 0w
E .

0

PraAddByteino

void setup() {

4 byte x1 = 25;

5 byte x2 = 39;

6 byte y = x1 + x2;
7}

8

9 oid loop() {
1}

Output =6

sketch uses 444 bytes (1%) of program storage space. Maximum is 32256 bytes.
Global variables use 9 bytes (@%) of dynamic memory, leaving 2039 bytes for local variables. Maximum is 2048 bytes

Ln10,Col 2 Arduino Uno [not connected] (21 B

Fig. 15. Using the built-in code optimizer to optimize a written sketch

As can be seen from Fig. 15, the size of the firmware file generated by the Arduino IDE version 2.3.4
environment after optimization but without the bootloader takes up 444 bytes. This is approximately 1.38 %
of the available FLASH memory for the ATMega328P microcontroller. For the ATMegal6 microcontroller,
this will be approximately 2.75 % of the available memory. And for the ATMega8 microcontroller,
respectively, 5.5 %. Together with the bootloader, after optimizing the generated code, the program will take
up 946 bytes (444 bytes of the code itself, which implements the operation of adding two single-byte
variables + 502 bytes of the bootloader). In percentage terms, this percentage will already be 11.73 % of the
available FLASH memory for the ATMega8 microcontroller. That is, the increase in the size of the firmware
file when using the bootloader is obvious.

5. If possible, abandon the bootloader. Such abandonment will slightly complicate the programming
of the microcontroller, but will save 502 bytes of valuable FLASH memory.

An example of a firmware file generated by the Arduino IDE version 2.3.4 development environment
without a bootloader but with optimization, with a size of 444 bytes, compatible with Arduino Classic
microcontrollers for the operation of adding two one-byte variables using local variables and without using
additional functions is shown in Fig. 16.

= ProAddByte ino hex 1 |
:100000000C9434000C9446000C9446000C94460060
)000C2446000C2446000C9446000C94460045
0000Cc9446000C9446000C9446000C94460038
0000Cc9446000Cc9446000C9446000C94460028
0000CS448000C9446000C2446000C9446001¢
0000Cc9446000C9446000C9446000C94460008
0000Cc9446000C94460011241FBECFEFD8E(Q3C
OO0DDEBFCDBF21EOUAOEOBLEOO0L1CO1DS2A930FC
000B207ELF70ES2492000C94DC0O00CY40000CF
O001F920F920FB6OF9211242F933F938F93ED
0009F93AF93BF938091050190910601A051 12
0000701B09108013091040123E0230F2D37C5F
00058F50196A11DB11D2093040180930501EF
00090930601A0930701B0930801809100015D
00090910101A0910201B09103010196A11DIF
000B11D8B093000190930101A0930201B0S350
100000301BFS1AF919F918F913F912F910F90DC
110000FBEOFS01F90189526E8230F029¢A11DE1
12000B11DD2CF789484B5826084BD84B581600E
00084BDB5B5826085BD85B5816085BD8091B2
140006E00816080936E0010928100809181002A
150008260809381008091810081608093810022
16£00080918000816£0809380008091B1008460E4
170008093B1008091B00081608093B000B0OY145
0007A00846080937A0080917A008260805304
90007A0080917A00816080937A0080917A00¢61
1n000806580937RA001092C100CO0EODOEN209770
EOOOF1F30ES40000FBCFF894FFCFS Y
:00000001FF

—

=
=

WK PO WC
=

1oy o
=

(SIS ST SR I U G I S I SC 6
O m - T

Fig. 16. Optimized firmware file for the operation
of adding two byte variables without a loader

41

Ruslan Holovatskyy

B ProAddByte ino hex [=| PraAddByte.ino with_boctloader hex E1 B ProAddByte ino hex [=] PraAddByte ino.with_boactloader hex E1
1 H:020000040000FA 32 :107E2000€20080E18093C4008EEQC9D0259A8B6E02C
2 :100000000Cc9434000Cc9446000C9446000C94460060 33 :107E300020E33CEF91E0309385002093840096BBD2
3 :100010000C9446000C9446000C9446000C94460045 34 :107E4000BOYBFECF1D9ARB958150A9F7CC24DD24C4
4 10 0000C9446000C5446000C9446000C9446003C 35 :107E5000882483%4B5SE0AB2EALE] 9A2EF3E(UBF2EE T
5 0000C9446000C9446000C5446000C94460025 36 :107E6000A2D0813461F49FD0O0B2FAFDO023811F03¢
6 0000C9448000Cc9446000C9446000C94460016 37 :107E7000013811F484E001C083E08DD089COB234E(
T 0000C9446000C5446000C9446000C9446000C 38 :107E200011F484E103C0853419F485E0A6D080C0EL
8 J60000C9446000C94460011241FBECFEFDBEDSC 39 :107E2000853579F488D0EB2EFF2485D0082F10E0AE
9 O0OODEBFCDBF21E0OAQOEOB1EOOLICO1IDS2A930FC 40 :107EADOOLO02F00270E291F29000F111FBEDOG6BOLET
10 000B207ELF70ES492000C%94DC0O00C9400008F 41 D7EBO0DBFC0863521F484E090D08B0EODECF843635
11 D001F920F920FB60F9211242F933F938F93ED 42 :107ECO0009F040C070D06FDO08B2F6DDOBOEOCBLGEE
12 D009F93AF93BF938091050190910601RA091 12 43 : 107EDODNOBORTD8NE18FAF60) 1 B7TBEERSS5COEODLIED] T
13 0000701B09108013091040123E0230F2D372F 44 :107EE00062D089930C17E1F7FOEOCF16FOETDF06DE
14 00058F5019cA11DB11D2093040180930501EF 45 1 107EFO0018FOF601B7BEEB9568D007B600FCFDCFDA
15 00090930601A0930701B0930801809100015D 46 :107F0000A601A0EOBLIEO2C9130E011968C91119730
16 00090910101A0910201B09103010196A11DIF 47 :107F100090E0982F88278228B932B12%6FA010C0160
17 000B11D8093000190930101A0930201B0O93C0 48 :107F200087BEE89511244E5F5F4FF1EQAQ38BFO790
18 J0100000301BFS1AF919F918FS13F312F910F30DC 4c :107F300051F7F601ATBEEBS507B600FCFDCF9TBELE
18 :100110000FBREQOFS01F20189526E68230F02%6A11DE1 50 :107F4000E89526C08437R1F42ED02DD0OF82E2BD052
20 :10012000B11DD2CF789484E5826084BD84B581600E 51 :107F50003CD0F601EF2C8F010FSF1F4F84911BD0Y7
21 101300084BD8B5B5826085BD85B5816085BD8B0%1B2 52 s 107FE000EASAF801C1F70894C11CDLICFASACFOCL
22 :100140006E00816080236E00105281008091810022 53 :107F7000D11COEC0853739F428D08EE10CD0OBSESAC
23 :100150008260809381008091810081608093810022 54 0000ADOSFEOTACF813511F488E018D01DD0OET
24 :1001€000809180008160809380008091B1008460E4 55 0 0008B0E101D065CF982FB091C000BKFFFCCFY4
25 :100170008093B1008091B00081608093B000809145 56 1 107FAD009093C60008558091CO008TFFFCCF805112
26 i 10 0007R00846080937A0080917A008260809304 57 :107FBO00C000B4FDO1COABS58091C6000895E0ER4LT
27 00150007A0080917A00816080537A0080917A0061 58 :107FCO00FOEO98E1908380330895EDDF803219F02E
28 :1001R000806880937A001092C100CO0EODOEN209770 59 :107FDO0088EOFSDFFFCF84E1DECF1F93182FE3DECA
28 :0COLBO00F1F30E940000FBCFFBI4FFCEDS 60 :107FE0001150E9F7F2DF1F91089580E0EBDFEE2 76
30 :107E0000112484B714BE8S1FFFODO8S5SEOB0938100F7 61 :047FFO00FF270994CH
31 :107E100082E080%93C00088E18093C10086E0809377 62 L TEFFE0004047¢
32 :107E2000C20080E18093C4008EE0COD0259A86E02C 63 :00000001FH

Fig. 17. Optimized firmware file for the operation of adding two byte variables with a loader

Results and discussion

An example of a firmware file with a bootloader and optimization, 946 bytes in size, generated by the
Arduino IDE version 2.3.4 development environment, compatible with Arduino Classic microcontrollers for
the operation of adding two one-byte variables using local variables and without using additional functions,
is shown in Fig. 17.

As a result of the study, the efficiency of the generated code for the AVR architecture on the classic
Arduino UNO R3 platform by the Arduino IDE version 2.3.4 development environment was analyzed, when
performing basic arithmetic operations of addition and subtraction. The study included a comparison of code
variants using variables of different types and forms of their initialization, as well as using different types of
functions or without them. The sizes of the generated code by the Arduino IDE environment were considered
and determined for the following ways of performing the addition operation: Local variables without
additional functions; Global variables, an addition function without parameters and without returning a
result; Global variables, an addition function without parameters with returning a result; Global variables,
an addition function that accepts arguments and returns a result; Local variables, an addition function that
accepts arguments and returns a result.

The optimal implementation of the addition operation on integer variables was found. It turned out to
be a method using local variables and without using additional functions (Fig. 7). Therefore, in the future,
for our experiments with other dimensions of operands, this method of implementing the operation under
study was chosen. The worst version of the implementation of the addition operation in terms of the firmware
file size of all those studied within the framework of this work was also found. It turned out to be a version
of implementing the addition operation using global variables and an addition function that accepts
arguments and returns a result.

The obtained research results are summarized in graphs for ease of visual perception and are presented
in Fig. 18-20 with a detailed explanation of the results obtained.

The size of the bootloader for the Arduino Classic family of boards has been determined. It occupies
502 bytes of FLASH memory, which is approximately 1.56 % of the available FLASH memory for the
ATMega328P microcontroller. For the ATMegal6 microcontroller, this will be approximately 3.11 % of the
available memory. And for the ATMega8 microcontroller, respectively, 6.21 %.

42

Research of the Efficiency of Code Generation by the Arduino IDE Development...

Adding two variables of type byte Subtracting two variables of type byte
00 ¢ 2000
1800 |~ 1800
1600 1600
1400 ¢

¥ Arduino IDE + Loader

¥ Arduino IDE

" Arduino IDE Opt + Loader
™ Arduino IDE Opt

¥ Arduino IDE + Loader

¥ Arduino IDE

M Arduino IDE Opt + Loader
¥ Arduino IDE Opt

e

Program Size (bytes)
gggzss
Program Size (bytes)

g§8s8

200 | 200
200 200 |
0k ¢
(byte) Y =x1+x2 (byte) Y =x1 - x2
a b
Fig. 18. Firmware file sizes for elementary arithmetic operations of two byte type variables:
a — for the addition operation; b — for the subtraction operation
Adding two variables of type Int Subtracting two variables of type Int
e ;71920
2000 28 2000 (7
1800 1800
1600 21600
é 1400 ® Arduino IDE + Loader :;. 1400 W Arduino IDE + Loader
g # Arduino IDE § 00 7 A ® Arduino IDE
Eg 1000 Arduino IDE Opt + Loader 5 1000 ® Arduino IDE Opt + Loader
g 800 / ™ Arduino IDE Opt g 800 z ¥ Arduino IDE Opt
g 600 g e00
& 200 & a0
200 200
0 o 1 = =
(Int) Y=x1+x2 (Inf) Y =x1-x2
a b
Fig. 19. Firmware file sizes for elementary arithmetic operations of two variables of type Int:
a — for the addition operation; b — for the subtraction operation.
Adding two variables of type Long Subtracting two variables of type Long
2000 (~ 2000
1800 1800
= 1600 ; 4 o~ 1600
:‘% 1400 ‘ y ® Arduino IDE + Loader ;: 1400 ¥ Arduino IDE + Loader
& 120 10 # Arduino IDE g 120 # Arduino TDE
Eg looo I # Arduino IDE Opt + Loader € 1000 # Arduino IDE Opt + Loader
& 800 |7 ® Arduino IDE Opt s 800 ® Arduino IDE Opt
g 600 g 600
& 400 | & 400
200 | 200
0k e
(Long) Y =x1+x2 (Long) Y =x1-x2
a b

Fig. 20. Firmware file sizes for elementary arithmetic operations of two Long type variables:
a — for the addition operation; b — for the subtraction operation

For visual perception and better understanding of the material presented in the article, examples of
microcontroller firmware files without a loader (Fig. 13) and with a loader (Fig. 14) but without optimization,
as well as without a loader (Fig. 16) and with a loader (Fig. 17) but with optimization for the operation of
adding two single-byte variables using local variables and without using additional functions are provided.

Based on the research, ways to improve the efficiency of code for sketches for the Arduino hardware
platform are proposed. It is shown how effectively the internal code optimizer built into the Arduino IDE works.

43

Ruslan Holovatskyy

Conclusions

The conducted research showed, using the example of elementary arithmetic operations of addition
and subtraction, that the Arduino IDE development environment generates inefficient code. The situation
improves if the built-in code optimizer is used correctly. With its help, the size of the firmware file with a
loader for the operation of adding two single-byte variables was reduced by half. The size of the firmware
file without a loader for the operation of adding two single-byte variables was reduced by 3.2 times.
However, it can be said with confidence that there is great potential for further reduction of the firmware file
size. Which can be the subject of further research.

The article also provides general recommendations for improving the efficiency of writing sketches
for Arduino platforms. The main ones are: abandoning the bootloader; using constants instead of variables
where possible, using data types with smaller bit sizes. It is shown that even simple arithmetic operations
can have different hardware costs depending on the way they are written in the code.

These findings have practical implications for embedded system developers, allowing them to make
more informed decisions when choosing data types and programming style to achieve maximum efficiency.
In the future, the research can be extended to other types of operations, variables, and other microcontroller
architectures.

References

[1] https://www.arduino.cc/ [E-resource]. Arduino hardware platform and Arduino IDE development
environment.

[2] https://www.microchip.com/en-us/products/microcontrollers-and-microprocessors [E-resource]. Microchip
microcontrollers.

[3] Neil Cameron. Arduino Applied: Comprehensive Projects for Everyday Electronics. APRESS. ISBN 978-1-
4842-3959-9. 2018. 552p. https://doi/org/10.1007/978-1-4842-3960-5_1

[4] Michael Margolis, Brian Jepson. Arduino Cookbook: Recipes to Begin, Expand, and Enhance Your Projects
3rd Edition. O'REILLY. ISBN 978-1-4919-0352-0. 2020. 800 p.

[5] Farzin Asadi. Essentials of Arduino™ Boards Programming: Step-by-Step Guide to Master Arduino Boards
Hardware and Software. APRESS. ISBN 978-1-4842-9599-1. 2023. 332 p. https://doi/org/10.1007/978-1-4842-9600-
41

[6] https://projecthub.arduino.cc/me_yogesh/diy-iot-plant-watering-system-using-arduino-b00eb3
[E-resource]. Plant Watering System.

[7] https://projecthub.arduino.cc/diytechos786/portable-mini-weather-station-real-time-weather-updates-with-
web-configuration-1fa024 [E-resource]. Portable Mini Weather Station.

[8] https://projecthub.arduino.cc/rajeshjiet/iot-based-health-monitoring-system-arduino-project-27f2ba
[E-resource]. 10T based health monitoring system.

[9] https://projecthub.arduino.cc/crepeguy/jumpman-lcd-game-c9aeal [E-resource]. jumpman lcd game.

[10] https://projecthub.arduino.cc/Nagarajan-S/reprap-3-dimentional-additive-manufacturing-printer-with-iot-
37621f [E-resource]. RepRap 3-Dimentional Additive Manufacturing Printer with 10T.

[11] https://projecthub.arduino.cc/Aboubakr_Elhammoumi/real-time-data-acquisition-of-solar-panel-using-
arduino-9c72ef [E-resource]. Real-Time Data Acquisition of Solar Panel Using Arduino

[12] https://projecthub.arduino.cc/ghemml/cnc-arduino-winding-machine-652378 [E-resource]. CNC Arduino
Winding Machine

[13] Alfred V. Aho, Monica S. Lam, Ravi Sethi, Jeffrey D. Ullman. Compilers: Principles, Techniques, and
Tools, 2nd Edition, 2007, 966 p.

[14] Niklaus Wirth, Jiirg Gutknecht. Project Oberon. The Design of an Operating System and Compiler, Edition
2005, 441 p.

44

Research of the Efficiency of Code Generation by the Arduino IDE Development...

Pycnan I'osioBaubkuii

Kadenpa cuctem aBTOMaTH30BaHOTO MIPOEKTYBaHH:, HarionansHuit yHiBepcuTeT “JIbBiBCHKA MMONITEXHIKA”,
Bya. C. Baunepwn, 12, JIsBiB, Ykpaina, E-mail: ruslan.i.holovatskyi@Ipnu.ua, ORCID 0009-0001-3096-1115

JOCILIKEHHSA EOEKTUBHOCTI TEHEPYBAHHS KOJAY CEPEJOBUIIEM PO3POBKH ARDUINO
IDE HA TIPUKJIAJII APUGMETUYHMNX OINEPAIIII TOTABAHHS TA BITHIMAHHS

Otpumano: Bepecens 01, 2025 / Ilepermsiayro: Bepecens 09, 2025 / Ipuitasto: Bepecens 15, 2025
© lonosaywxuii P*., 2025

AHoTanis. Y craTTi po3risaHyTO e(eKTUBHICTh TeHepyBaHHS KOAY CepeloBHIIeM po3podkum Arduino
IDE mix yac BUKOHaHHA eJIEMEHTApHUAX apu(METHIHIX OIepalliif JogaBaHHs Ta BinHiMaHHA. Lle cepemoBue €
MOMYJISIPHAM THCTPYMEHTOM Cepell PO3POOHHKIB IJisi pOOOTH 3 MIKPOKOHTPOJIEPAMH, OCKIIBKH MAa€ 3pYYHUN
iHTepdeiic Ui MBUIKOTO NPOTOTUITYBaHHS. OIHIEIO 3 KIIOUYOBUX XapaKTEPUCTHK TAKHX CEPEHOBHIL € SKiCTh
3rEHEPOBAHOTO KOAY, 10 BIUIMBAE Ha IIBUIKICTh BUKOHAHHS IIPOrpaM, BUKOPUCTAHHS MaM’ATi Ta 3arajbHy
MPOJIYKTUBHICTh CHCTEMH. TOMY NOCHTI[PKEHHs e(EeKTHBHOCTI T€HEPYBaHHS KOJIy BKa3aHUM CEpEOBHUILEM
PO3pOOJICHHS € aKTyaJbHUM 3aBJaHHSAM. Y LbOMY JOCII/KEHHI MTPOaHalli30BaHO MPOIYKTUBHICTh, BUKOPHC-
TaHHS IaM’ATi Ta ONTUMI3allio0 KOy KOMIinsTopoM. HaBeneHo ekcriepuMeHTanbHi pe3ylbTaTH Ta 3pO0JIeHO
BHCHOBKHM IOAO JOLUIBHOCTI BHKOPHCTAHHS CEpEeNOBHINA JUIS 3aJad i3 BHCOKMMH BHUMOTaMH JIO IIpO-
JyKTABHOCTI.

Kuarouosi coBa: Arduino IDE, renepyBanHs Koy, €peKTUBHICTD, apu()METHYHI omniepariii, JoJaBaHHS,
BigHIMaHHS, MikpokoHTpoJiepu, AVR, ¢aiin npommsky.

* Corresponding author

@ @ © The Author(s). This is an open access article distributed under the terms of the Creative
Commons Attribution Licence 4.0 (https://creativecommons.org/licenses/by/4.0/)

45

