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Commuting graph for a finite group G, denoted by ΓG, with its set of vertices G\Z(G),
where Z(G) is the center of G, is a graph with vp, vq ∈ G\Z(G), vp 6= vq, are adjacent
whenever vpvq = vqvp. In recent years, there has been significant research into the energy
of graphs, particularly focusing on matrices associated with the degree of vertices. There-
fore, motivated by that, our study elaborates on the energy of ΓG for dihedral groups
of order 2n, D2n, concerning some graph matrices related to the degree of elements of
D2n\Z(D2n) and examine the correlation between those energies. The matrices involved
are known as geometric-arithmetic, symmetric division deg, degree exponent, inverse sum
indeg and Sombor matrices. Based on these five matrices, it is found that the lowest graph
energy is the geometric-arithmetic energy of ΓG whilst the highest is the degree exponent
energy. Furthermore, the geometric-arithmetic, symmetric division deg, and degree expo-
nent energies are always positive even integers. In contrast, the inverse sum indeg energy
is a positive integer that can be either even or odd. Meanwhile, the Sombor energy is
never an odd integer.
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1. Introduction

The non-abelian dihedral group of order 2n is a group with 2n elements, where n is 3 or greater.
The operation is composition and it is referred to as D2n =

〈

a, b : an = b2 = e, bab = a−1
〉

[1]. The

center of D2n is called Z(D2n), in the form of Z(D2n) = {e} for odd n, or for even n, it is
{

e, a
n
2

}

.
Moreover, in D2n, the centralizer of ai is represented by CD2n

(ai) = {aj : 1 6 j 6 n}. Meanwhile, for
the other elements of D2n, we have two cases which are CD2n

(aib) = {e, aib} for odd n, or CD2n
(aib) =

{

e, a
n
2 , aib, a

n
2
+ib

}

for even n.
Commuting graph ΓG for a finite group G, possesses a set of vertices G\Z(G), and vp, vq ∈ G\Z(G)

are adjacent whenever vpvq = vqvp, where Z(G) is the center of G [3]. Several discussions of this graph
with a symmetric group of degree n as the set of vertices have been conducted, see [7]. The energy of
ΓG equals the total of the absolute values of all of its eigenvalues. Gutman [5] was the first to propose
this definition in 1978. According to [2] and [8], the graph energy is never an odd integer.

In recent years, research on graph energy development has marked an increase in graph matrices
studies. Despite the adjacency matrices, much work has been done on new graph matrices. Deter-
mination of the energy bounds for a simple graph associated with several degree-based matrices was
obtained, for instance, geometric-arithmetic energy [11], symmetric division deg energy [9], inverse sum
indeg [16], and Sombor energy [6]. Besides, Ramane and Shinde [10] introduced the degree exponent
matrix and stated its characteristic polynomial for regular graphs.
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The Seidel Laplacian and Seidel Signless Laplacian, degree exponent sum, maximum and minimum
degree energies of ΓG for D2n were shown in [12,14,15]. Meanwhile, Romdhini and Nawawi formulated
the energy of non-commuting graphs for D2n by analyzing the eigenvalues of the Sombor matrix [13].
Consequently, the research aims of this study were to delineate a comprehensive formula of commuting
graph energy for dihedral groups based on the eigenvalues of a geometric-arithmetic matrix, symmetric
division deg matrix, degree exponent matrix, inverse sum indeg matrix, and Sombor matrix.

This paper is divided into 5 parts. In Section 2, several theorems and lemmas are introduced
to construct matrices and solve their characteristic polynomials, as well as to compare degree-based
energies. Section 3 is primarily concerned with the energy formula of the commuting graph for D2n

resulting from seven different types of graph matrices. The discussion of the relationship between those
energies is given in Section 4. In the end, in Section 5, we provide brief concluding remarks.

2. Preliminaries

In this part we start with five degree-based matrix definitions, considering dvp as the degree of vp.

Definition 1 (Ref. [11]). The n× n geometric-arithmetic matrix of ΓG, GA(ΓG) = [gapq] in which

(p, q)-th entry is

gapq =







2
√

dvpdvq

dvp + dvq
, if vp 6= vq are adjacent,

0, otherwise.

Definition 2 (Ref. [9]). The n × n symmetric division deg matrix of ΓG, SDD(ΓG) = [sddpq] in

which (p, q)-th entry is

sddpq =







min{dvp , dvq}
max{dvp , dvq}

+
max{dvp , dvq}
min{dvp , dvq}

, if vp 6= vq are adjacent,

0, otherwise.

Definition 3 (Ref. [10]). The n × n degree exponent matrix of ΓG, DE(ΓG) = [depq] in which

(p, q)-th entry is

depq =

{

d
dvq
vp , if p 6= q,

0, if p = q.

Definition 4 (Ref. [16]). The n × n inverse sum indeg matrix of ΓG, ISI(ΓG) = [isipq] in which

(p, q)-th entry is

isipq =







dvpdvq

dvp + dvq
, if vp 6= vq are adjacent,

0, otherwise.

Definition 5 (Ref. [6]). The n× n Sombor matrix of ΓG, S(ΓG) = [spq] in which (p, q)-th entry

spq =

{ √

d2vp + d2vq , if vp 6= vq are adjacent,

0, otherwise.

Moreover, the spectrum of ΓG is the list of eigenvalues λ1, λ2, . . . , λn, with their respective mul-
tiplicities k1, k2, . . . , kn, denoted by Spec(ΓG) =

{

λk1
1 , λk2

2 , . . . , λkn
n

}

. Now we present some previous
results to prove the theorems obtained in Section 3. In determining the energy of the graph, it is
necessary to formulate the characteristic polynomial of ΓG. Two essential results help to compute it
as follows.

Lemma 1 (Ref. [10]). Suppose real numbers a, b, c, and d. Given Jn is a matrix of size n × n in

which all components are 1. Then the determinant of
∣

∣

∣

∣

(λ+ a)In1
− aJn1

−cJn1×n2

−dJn2×n1
(λ+ b)In2

− bJn2

∣

∣

∣

∣
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can be simplified as

(λ+ a)n1−1(λ+ b)n2−1 ((λ− (n1 − 1)a) (λ− (n2 − 1) b)− n1n2cd) ,

where 1 6 n1, n2 6 n and n1 + n2 = n.

Theorem 1 (Ref. [4]). Given a square matrix M =
[

A B
C D

]

that can be divided into 4 blocks, where

A is a square matrix with |A| 6= 0, then

∣

∣M
∣

∣ =

∣

∣

∣

∣

A B

O D − CA−1B

∣

∣

∣

∣

=
∣

∣A
∣

∣

∣

∣D −CA−1B
∣

∣.

This paper concentrates on dihedral groups, D2n. Let G1 = {ai : 1 6 i 6 n}\Z(D2n) and G2 =
{aib : 1 6 i 6 n}. Results regarding the degree of each vertex in ΓG for G = G1 ∪ G2 is presented as
follows.

Theorem 2 (Ref. [15]). Let G = G1 ∪G2, then in ΓG,

1. dai =

{

n− 2, if n is odd,

n− 3, if n is even,
and

2. daib =

{

0, if n is odd,

1, if n is even.

As a result, the subsequent theorem demonstrates the isomorphism between the commuting graph
and the standard type of graphs.

Theorem 3 (Ref. [15]). In ΓG, we have

1. ΓG
∼= Km, where G = G1 and m = |G1|, and

2. for G = G2, ΓG
∼=

{

K̄n, for odd n,

1− regular graph, for even n.

Furthermore, we use the following two theorems to compare the results obtained in this paper.

Theorem 4 (Ref. [15]). Let G = G1 ∪G2. The degree exponent sum energy for ΓG is

1. for n is odd, EDES(ΓG) = 4(n − 2)n−1 + 4(n − 1), and

2. for n is even, EDES(ΓG) =

{

20, if n = 4,
4(n− 3)n−2 + 4(n − 1), if n > 4.

Theorem 5 (Ref. [14]). Let G = G1 ∪G2. The maximum degree and minimum degree energies for

ΓG are

1. for n is odd, EMaxD(ΓG) = EMinD(ΓG) = 2(n− 2)2, and

2. for n is even, EMaxD(ΓG) = EMinD(ΓG) = 2(n − 3)2 + n.

3. Results

This section will present the results of commuting graph energy for D2n using the corresponding graph
matrices related to the degree of vertices of ΓG. This only applies to n > 3, as D2n is abelian for n = 1
and n = 2.

3.1. Geometric-arithmetic energy

Theorem 6. Let G = G1 ∪G2. The geometric-arithmetic energy of ΓG is

1. for n is odd, EGA(ΓG) = 2(n − 2), and

2. for n is even, EGA(ΓG) = 2(n− 3) + n.

Proof.

1. As is well acknowledged for the odd n, Z(D2n) = {e} indicates that there are 2n − 1 vertices
in ΓG. We write the set G1 as {a, a2, . . . , an−1} and G2 as {b, ab, a2b, . . . , an−1b}. From the fact
that CD2n

(ai) = {e, a, a2, . . . , an−1}, thus the vertex ai, for i = 1, 2, . . . , n − 1 always has an edge
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with all members of G1, nonetheless, it is not adjacent to every vertex in G2. The centralizer of
aib is {a, aib} is indicating that for i = 1, 2, . . . , n, the vertex aib is not adjacent with all other
components of G1 ∪ G2. Considering Theorem 2 (1), we have dai = n − 2 and daib = 0, for all

1 6 i 6 n. Then for the adjacent two distinct vertices, the entries of GA(ΓG) are
2
√

(n−2)(n−2)

n−2+n−2 = 1,
and zero otherwise. Now from Definition 1 and Theorem 3 (1), we acquire the geometric-arithmetic
matrix of ΓG is a (2n − 1)× (2n− 1) matrix

GA(ΓG) =

[

(J − I)n−1 0(n−1)×n

0n×(n−1) 0n

]

. (1)

The characteristic formula of GA(ΓG) is

PGA(ΓG)(λ) =

∣

∣

∣

∣

(λ+ 1)In−1 − Jn−1 0(n−1)×n

0n×(n−1) λIn

∣

∣

∣

∣

.

Employing Lemma 1, with a = 1, b = c = d = 0, n1 = n− 1 and n2 = n, we then get

PGA(ΓG)(λ) = (λ+ 1)n−2
λn (λ− (n− 2)) .

It implies that GA-spectrum of ΓG is

Spec(ΓG) =
{

(n− 2)1, (0)n, (−1)n−2
}

.

By direct calculation, we obtain the following geometric-arithmetic energy of ΓG:

EGA(ΓG) = (n− 2)| − 1|+ (n)|0| + |n− 2| = 2(n − 2). (2)

2. Given that n is even where Z(D2n) = {e, an
2 } means that we have 2n − 2 vertices in ΓG, for

G = G1 ∪ G2, with n − 2 vertices ai, 1 6 i < n
2 , n

2 < i < n, and n vertices aib, 1 6 i 6 n.

We designate the set G1 as {a, a2, . . . , an
2
−1, a

n
2
+1, . . . , an−1} and G2 as {b, ab, a2b, . . . , an−1b}.

Repeated application of Theorem 2 (2), we have dai = n − 3 and daib = 1. On the other hand, to
construct GA(ΓG), we use Definition 1 and Theorem 3 (2), so we obtain (2n− 2)× (2n− 2) matrix
as follows:

GA(ΓG) =







(J − I)n−2 0(n−2)×n
2

0(n−2)×n
2

0n
2
×(n−2) 0n

2

In
2

0n
2
×(n−2) In

2

0n
2






. (3)

Therefore, the characteristic formula of GA(ΓG) is derived from the subsequent determinant:

PGA(ΓG)(λ) =

∣

∣

∣

∣

∣

∣

∣

(λ+ 1) In−2 − Jn−2 0(n−2)×n
2

0(n−2)×n
2

0n
2
×(n−2) λIn

2

−In
2

0n
2
×(n−2) −In

2

λIn
2

∣

∣

∣

∣

∣

∣

∣

. (4)

According to Theorem 1 with

A = [(λ+ 1) In−2 − Jn−2] , (5)

B =
[

0(n−2)×n

]

, C =
[

0n×(n−2)

]

, and

D =

[

λIn
2

−In
2

−In
2

λIn
2

]

, (6)

then Equation (4) is the form PGA(ΓG)(λ) = |A| |D| (since C = 0). Now we consider the matrix

determinant in Equation (5). By using Lemma 1 with a = b = c = d = 1, and n1 = n2 =
n−2
2 , it is

determined that

|A| = (λ+ 1)n−3(λ− (n− 3)). (7)

Concurrently for the matrix determinant of Equation (6), we have Ci and C
′

i , which are the i-th
column and its new i-th column after a column operation of |D|, respectively. By applying the row
operation R

′

n
2
+i = Rn

2
+i −Ri, following by C

′

i = Ci + Cn
2
+i on Equation (6), for every 1 6 i 6 n

2 ,
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836 Romdhini M. U., Nawawi A.

then we see that

|D| =
∣

∣

∣

∣

∣

(λ− 1)In
2

−In
2

0n
2

(λ+ 1)In
2

∣

∣

∣

∣

∣

. (8)

Due to Equation (8) being the determinant of an upper triangular matrix, then we have

|D| =
∣

∣

∣
(λ− 1)In

2

∣

∣

∣

∣

∣

∣
(λ+ 1)In

2

∣

∣

∣
= (λ+ 1)

n
2 (λ− 1)

n
2 . (9)

Using Equations (7) and (9), consequently

PGA(ΓG)(λ) = (λ+ 1)
3n−6

2 (λ− (n− 3)) (λ− 1)
n
2 .

Here GA-spectrum of ΓG is

Spec(ΓG) =
{

(n− 3)1, (1)
n
2 , (−1)

3n−6

2

}

.

In the end, by direct calculation we obtain

EGA(ΓG) = (1)|n − 3|+ n

2
|1|+ 3n− 6

2
| − 1| = 2(n− 3) + n. (10)

�

3.2. Symmetric division deg energy

Theorem 7. Let G = G1 ∪G2. The symmetric division deg energy of ΓG is

1. for n is odd, ESDD(ΓG) = 4(n− 2), and

2. for n is even, ESDD(ΓG) = 4(n − 3) + 2n.

Proof.

1. By considering the properties from Theorem 2 (1) for the odd n that dai = n− 2 and daib = 0, for
all i = 1, 2, . . . , n in conjunction with Definition 2 and Theorem 3 (1), similar to the labeling of G1

and G2 in Theorem 6 (1), then SDD(ΓG) is a matrix with dimension (2n − 1) × (2n − 1) as given
below:

SDD(ΓG) =

[

2(J − I)n−1 0(n−1)×n

0n×(n−1) 0n

]

.

Then from Equation (1), one can easily see that, SDD(ΓG) = 2 · GA(ΓG). From the relation in
Equation (2), the symmetric division deg energy of ΓG is equivalent to

ESDD(ΓG) = 2 ·EGA(ΓG) = 2 · 2(n− 2) = 4(n − 2).

2. Using the same reasoning as the proof of Theorem 6 (2) for n is even, we get the adjacency re-
lation between two vertices by following Theorem 3 (2). Combining it with Theorem 2 (2) and
Definition 2, clearly that we can construct SDD(ΓG) of size (2n − 2)× (2n− 2):

SDD(ΓG) =







2(J − I)n−2 0(n−2)×n
2

0(n−2)×n
2

0n
2
×(n−2) 0n

2

2In
2

0n
2
×(n−2) 2In

2

0n
2






= 2 ·GA(ΓG).

Consider the matrix in Equation (3), then SDD(ΓG) = 2 · GA(ΓG). Applying Equation (10), we
obtain:

ESDD(ΓG) = 2 ·EGA(ΓG) = 2(2(n − 3) + n) = 4(n − 3) + 2n. (11)

�

3.3. Degree exponent energy

Theorem 8. Let G = G1 ∪G2. The degree exponent energy for ΓG is

1. for n is odd, EDE(ΓG) = 2(n − 2)n−1 + 2(n− 1), and

2. for n is even, EDE(ΓG) =

{

10, if n = 4
2(n− 3)n−2 + 2(n − 1), if n > 4.
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Proof.
1. From the first case n is odd, based on Theorems 2 (1), 3 (1) and Definition 3, we can construct

DE(ΓG) of order (2n−1)×(2n−1). We label G1 and G2 in the same way as proving Theorem 6(1).
Therefore,

DE(ΓG) =

[

(n− 2)n−2(J − I)n−1 J(n−1)×n

0n×(n−1) (J − I)n

]

.

The characteristic formula of DE(ΓG) can be states as

PDE(ΓG)(λ) =

∣

∣

∣

∣

(λ+ (n− 2)n−2)In−1 − (n− 2)n−2Jn−1 −J(n−1)×n

0n×(n−1) (λ+ 1)In − Jn

∣

∣

∣

∣

. (12)

Let n1 = n− 1, n2 = n and a = (n− 2)n−2, b = c = 1, d = 0, then directly form Lemma 1, we can
declare Equation (12) as

PDE(ΓG)(λ) = (λ+ (n− 2)n−2)n−2(λ+ 1)n−1(λ− (n− 2)n−1)(λ− (n− 1)).

Since DE-spectrum of ΓG is

Spec(ΓG) =
{

(

(n− 2)n−1
)1

, (n − 1)1, (−1)n−1,
(

−(n− 2)n−2
)n−2

}

,

then we easily conclude that the degree exponent energy of ΓG is

EDE(ΓG) = (n− 2)
∣

∣−(n− 2)n−2
∣

∣+ (n− 1) |−1|+
∣

∣(n− 2)n−1
∣

∣+ |n− 1| = 2(n− 2)n−1 + 2(n− 1).

2. Similar discussion for the even n, again from Theorems 2 (2), 3 (2) and directly from Definition 3,
then DE(ΓG) is a (2n − 2)× (2n− 2) matrix:

DE(ΓG) =

[

(n− 3)n−3(J − I)n−2 (n − 3)J(n−2)×n

Jn×(n−2) (J − I)n

]

.

It follows that

PDE(ΓG)(λ) =

∣

∣

∣

∣

(λ+ (n− 3)n−3)In−2 − (n − 3)n−3)Jn−2 −(n− 3)J(n−2)×n

−Jn×(n−2) (λ+ 1)In − Jn

∣

∣

∣

∣

. (13)

From Lemma 1, with a = (n − 3)n−3, b = d = 1, c = n − 3, n1 = n − 2 and n2 = n, then
Equation (13) can be written as

PDE(ΓG)(λ) =
(

λ+ (n− 3)n−3
)n−3

(λ+ 1)n−1

×
(

λ2 − (n− 1 + (n− 3)n−2)λ+ (n− 1)(n − 3)n−2 − n(n− 2)(n − 3)
)

.

Note that the quadratic formula gives two conditions. For n = 4, in this situation, we have
EDE(ΓG) = 10, whereas for n > 4, the DE-energy for ΓG is

EDE(ΓG) = 2(n− 3)n−2 + 2(n − 1).
�

3.4. Inverse sum indeg energy

Theorem 9. Let G = G1 ∪G2. The inverse sum indeg energy of ΓG is

1. for n is odd, EISI(ΓG) = (n− 2)2, and

2. for n is even, EISI(ΓG) = (n− 3)2 + n
2 .

Proof.

1. From the first case, when n is odd, in the same manner as proving Theorem 6 (1), and according
to Definition 5, then we can construct ISI(ΓG) of order (2n− 1)× (2n − 1) as follows:

ISI(ΓG) =

[ (

n−2
2

)

(J − I)n−1 0(n−1)×n

0n×(n−1) 0n

]

. (14)

In the light of the proofing part of Theorem 3.2 (1) in [14], then the immediate expression of
Equation (14) is

ISI(ΓG) =
1

2
·MaxD(ΓG) =

1

2
·MinD(ΓG),
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which implies from Theorem 5, the inverse sum indeg energy of ΓG is

EISI(ΓG) =
1

2
MaxD(ΓG) =

1

2
· 2(n − 2)2 = (n− 2)2.

2. Again, in the same way as proving Theorem 6 (2) for n is even, and combining with Definition 4,
clearly that we can construct a (2n − 2)× (2n− 2) matrix, ISI(ΓG) as follows:

ISI(ΓG) =







n−3
2 (J − I)n−2 0(n−2)×n

2

0(n−2)×n
2

0n
2
×(n−2) 0n

2

1
2In

2

0n
2
×(n−2)

1
2I

n
2

0n
2






. (15)

Invoking the proofing part of Theorem 3.2 (2) in [14], in other words, Equation (15) can be written
by

ISI(ΓG) =
1

2
·MaxD(ΓG) =

1

2
·MinD(ΓG).

Therefore,

EISI(ΓG) =
1

2
EMaxD(ΓG) =

1

2
(2(n − 3)2 + n) = (n− 3)2 +

n

2
,

which, due to Theorem 5, proves the theorem.
�

3.5. Sombor energy

Theorem 10. Let G = G1 ∪G2. The Sombor energy of ΓG is

1. for n is odd, ES(ΓG) = 2
√
2(n− 2)2, and

2. for n is even, ES(ΓG) = 2
√
2(n− 3)2 +

√
2n.

Proof.

1. Given n is odd, we have the same way of labeling G1 and G2 as a proof of Theorem 6 (1). By
Definition 5, the properties of Theorem 2 (1), and also the form of ΓG in Theorem 3 (1), then
matrix S(ΓG) of size (2n− 1)× (2n − 1) is as given below:

S(ΓG) =

[ √
2(n− 2)(J − I)n−1 0(n−1)×n

0n×(n−1) 0n

]

.

Combining the last matrix with the proofing part of Theorem 3.2 (1) in [14], we conclude that

S(ΓG) =
√
2 ·MaxD(ΓG) =

√
2 ·MinD(ΓG).

Using Theorem 5 (1), from the above equation, we obtain the Sombor energy of ΓG,

ES(ΓG) =
√
2EMaxD(ΓG) = 2

√
2(n− 2)2.

2. For the second case, by the same method as a proof of Theorem 6 (2) and using Definition 5, we
also obtain a similar result for even n. Then the Sombor matrix of ΓG of size (2n − 2) × (2n − 2)
follows immediately,

S(ΓG) =







√
2(n− 3)(J − I)n−2 0(n−2)×n

2

0(n−2)×n
2

0n
2
×(n−2) 0n

2

√
2In

2

0n
2
×(n−2)

√
2In

2

0n
2






,

and S(ΓG) =
√
2 · MaxD(ΓG) =

√
2 · MinD(ΓG) as a consequence of the proofing part of Theo-

rem 3.2 (2) in [14]. Consider Theorem 5 (2), we then obtain

ES(ΓG) =
√
2EMaxD(ΓG) = 2

√
2(n− 3)2 +

√
2n.

�

4. Discussion

By inspecting the results in Theorems 6–10, it is possible to derive several conclusions from the given
energies. The connection between energies yields the following two corollaries.
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Corollary 1. Let G = G1 ∪G2, then

1. EISI(ΓG) =
√
2
2 · ES(ΓG).

2. ESDD(ΓG) = 2 ·EGA(ΓG).
3. EDE(ΓG) =

1
2 · EDES(ΓG).

Corollary 2. Let G = G1 ∪G2, then

EGA(ΓG) < ESDD(ΓG) < EISI(ΓG) < ES(ΓG) < EDE(ΓG) < EDES(ΓG).

For the commuting graph for dihedral groups, from Corollary 1, it can be seen that there are
three clusters of the relationship between degree-based energies. Besides, the ordering of the obtained
energies in Corollary 2 shows that the two largest ones are the degree exponent sum energy and degree
exponent energy. The definition of DES and DE matrices consider the non-diagonal and diagonal
entries, while the other matrix definitions require the adjacency relation between two vertices in ΓG.
We also conclude that the lowest is the geometric arithmetic energy.

Furthermore, the geometric-arithmetic energy, symmetric division deg energy, and degree exponent
energies are always a positive even integer as well as the maximum degree energy, minimum degree
energy, and degree exponent sum energy from the previous result. On the other hand, the inverse sum
indeg energy is a positive integer that can be either even or odd. Meanwhile, the Sombor energy is
never an odd integer. More specifically, this paper’s energy formulas are never the square root of an
odd integer, except ISI-energy.

5. Conclusion

In this work, we determined the explicit formulas of the degree-based energies of commuting graphs
for dihedral groups and also obtained the comparison and the ordering of the given energies.
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Енергiї комутуючого графа для дiедричних груп
на основi степенiв
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2Кафедра математики та статистики, факультет природничих наук,

Унiверситет Путра Малайзiя, 43400 Серданг, Селангор, Малайзiя

Комутуючий граф для скiнченної групи G, що позначається ΓG, з множиною вершин
G\Z(G), де Z(G) — центр G, є графом, в якому vp, vq ∈ G\Z(G), vp 6= vq є сумiж-
ними, якщо vpvq = vqvp. Останнiми роками проводилися значнi дослiдження енергiї
графiв, зокрема з акцентом на матрицi, пов’язанi зi степенями вершин. Саме цим i
було мотивоване наше дослiдження, яке присвячене енергiї ΓG для дiедральних груп
порядку 2n, D2n, стосовно деяких графових матриць, пов’язаних зi степенем елемен-
тiв D2n\Z(D2n), та вивченню кореляцiї мiж цими енергiями. До розглянутих матриць
належать геометрично-арифметична, симетрична матриця дiлення степенiв, матриця
степенi експонент, матриця оберненої суми степенiв та матриця Сомбора. На основi
цих п’яти матриць було встановлено, що найменшу енергiю графа має геометрично-
арифметична енергiя ΓG, тодi як найвищу — енергiя показника степенi. Крiм того,
геометрично-арифметична енергiя, енергiя симетричного дiлення степенiв та енергiя
показника степеня завжди є додатними парними цiлими числами. Натомiсть, енергiя
оберненої суми степенiв є додатним цiлим числом, яке може бути як парним, так i
непарним. Енергiя Сомбора нiколи не є непарним цiлим числом.

Ключовi слова: комутуючий граф; енергiя графа; матрицi на основi степенiв;

дiедральна група.
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