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Commuting graph for a finite group G, denoted by T'¢, with its set of vertices G\ Z(G),
where Z(G) is the center of G, is a graph with vp,v, € G\Z(G), v, # vq, are adjacent
whenever v,v, = v4vp. In recent years, there has been significant research into the energy
of graphs, particularly focusing on matrices associated with the degree of vertices. There-
fore, motivated by that, our study elaborates on the energy of I'¢ for dihedral groups
of order 2n, Ds,, concerning some graph matrices related to the degree of elements of
D5, \Z(D3,,) and examine the correlation between those energies. The matrices involved
are known as geometric-arithmetic, symmetric division deg, degree exponent, inverse sum
indeg and Sombor matrices. Based on these five matrices, it is found that the lowest graph
energy is the geometric-arithmetic energy of I'¢ whilst the highest is the degree exponent
energy. Furthermore, the geometric-arithmetic, symmetric division deg, and degree expo-
nent energies are always positive even integers. In contrast, the inverse sum indeg energy
is a positive integer that can be either even or odd. Meanwhile, the Sombor energy is
never an odd integer.

Keywords: commuting graph; energy of graph; degree-based matrices; dihedral group.
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1. Introduction

The non-abelian dihedral group of order 2n is a group with 2n elements, where n is 3 or greater.
The operation is composition and it is referred to as Doy, = <a,b: a® =b> =e, bab = a_1> [1]. The
center of Dy, is called Z(Dsgy,), in the form of Z(Ds,) = {e} for odd n, or for even n, it is {e,a%}.
Moreover, in Dy, the centralizer of a* is represented by Cp,, (a') = {a’: 1 < j < n}. Meanwhile, for
the other elements of Dy, we have two cases which are Cp,_ (a’h) = {e,a’b} for odd n, or Cp,, (a’b) =
{e,a%,aib, a%”b} for even n.

Commuting graph I'g for a finite group G, possesses a set of vertices G\ Z(G), and vy, v, € G\Z(G)
are adjacent whenever v,v, = v4vp,, where Z(G) is the center of G [3]. Several discussions of this graph
with a symmetric group of degree n as the set of vertices have been conducted, see [7]. The energy of
I'¢ equals the total of the absolute values of all of its eigenvalues. Gutman [5] was the first to propose
this definition in 1978. According to [2] and [8], the graph energy is never an odd integer.

In recent years, research on graph energy development has marked an increase in graph matrices
studies. Despite the adjacency matrices, much work has been done on new graph matrices. Deter-
mination of the energy bounds for a simple graph associated with several degree-based matrices was
obtained, for instance, geometric-arithmetic energy [11], symmetric division deg energy [9], inverse sum
indeg [16], and Sombor energy [6]. Besides, Ramane and Shinde [10] introduced the degree exponent
matrix and stated its characteristic polynomial for regular graphs.
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Degree-based energies of commuting graph for dihedral groups 833

The Seidel Laplacian and Seidel Signless Laplacian, degree exponent sum, maximum and minimum
degree energies of ' for Dy, were shown in [12,14,15]. Meanwhile, Romdhini and Nawawi formulated
the energy of non-commuting graphs for Do, by analyzing the eigenvalues of the Sombor matrix [13].
Consequently, the research aims of this study were to delineate a comprehensive formula of commuting
graph energy for dihedral groups based on the eigenvalues of a geometric-arithmetic matrix, symmetric
division deg matrix, degree exponent matrix, inverse sum indeg matrix, and Sombor matrix.

This paper is divided into 5 parts. In Section 2, several theorems and lemmas are introduced
to construct matrices and solve their characteristic polynomials, as well as to compare degree-based
energies. Section 3 is primarily concerned with the energy formula of the commuting graph for Do,
resulting from seven different types of graph matrices. The discussion of the relationship between those
energies is given in Section 4. In the end, in Section 5, we provide brief concluding remarks.

2. Preliminaries

In this part we start with five degree-based matrix definitions, considering d.,, as the degree of v,.
Definition 1 (Ref. [11]). The n x n geometric-arithmetic matrix of I'q, GA(I'g) = [gayq| in which

(p, q)-th entry is
2y/dy,dy,
9apq = dvp + dvq ’
0, otherwise.

if v, # v, are adjacent,

Definition 2 (Ref. [9]). The n x n symmetric division deg matrix of I'q, SDD(I'g) = [sdd,,] in
which (p, q)-th entry is

min{d,,,d,,}  max{d,,,dy,}

sddpy; = § max{dy,,dy,} min{d,,,dy,}’

0, otherwise.

if v, # v, are adjacent,

Definition 3 (Ref. [10]). The n x n degree exponent matrix of I'q, DE(I'g) = [dey,| in which
(p, q)-th entry is

do .
depg =4 T HPF#q
0, ifp=gq.

Definition 4 (Ref. [16]). The n x n inverse sum indeg matrix of I'q, ISI(I'g) = [isipe] in which
(p, q)-th entry is
dy, dy,
i8ipg = m’
0, otherwise.

if v, # v, are adjacent,

Definition 5 (Ref. [6]). The n x n Sombor matrix of I'q, S(I'c) = [spq] in which (p, q)-th entry

Spq = { \/m, if v, # v, are adjacent,

0, otherwise.

Moreover, the spectrum of I'¢ is the list of eigenvalues A1, Ao, ..., \,, with their respective mul-
tiplicities k1, k2, ..., ky, denoted by Spec(I'g) = {)\]fl,)\]”, . ,)\ﬁ”}. Now we present some previous
results to prove the theorems obtained in Section 3. In determining the energy of the graph, it is
necessary to formulate the characteristic polynomial of I'g. Two essential results help to compute it
as follows.

Lemma 1 (Ref. [10]). Suppose real numbers a, b, ¢, and d. Given J,, is a matrix of size n X n in
which all components are 1. Then the determinant of

AN+ a)l,, —ady, —CJpy xno
—dJnyxn, A+ b1, — bJp,
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834 Romdhini M. U., Nawawi A.

can be simplified as
A+ a)" A+ 5)"7H (A = (01 = 1)a) (A = (n2 — 1)b) — nanged) ,

where 1 < ni,n9 < n and nq + ne = n.

Theorem 1 (Ref. [4]). Given a square matrix M = [ 4 B that can be divided into 4 blocks, where
A is a square matrix with |A| # 0, then

A B

M| = O D—-CA'B

= |A||D - CA7'B|.

This paper concentrates on dihedral groups, Da,. Let G1 = {a*: 1 < i < n}\Z(D2,) and Gy =
{a’b: 1 < i < n}. Results regarding the degree of each vertex in I'g for G = G7 U Gy is presented as
follows.

Theorem 2 (Ref. [15]). Let G = G1 U Go, then in I'g,
n—2, ifn isodd,

1. d,; = . .
n—3, ifn is even,

0, ifn isodd,
2 daip = { 1, ifn is even.

and

As a result, the subsequent theorem demonstrates the isomorphism between the commuting graph
and the standard type of graphs.

Theorem 3 (Ref. [15]). In ', we have
1. T'g & Ky, where G = G1 and m = |G1|, and

2. for G = Gq, T'g = { K, for odd n,

1 — regular graph, for even n.

Furthermore, we use the following two theorems to compare the results obtained in this paper.
Theorem 4 (Ref. [15]). Let G = G1 U Ga. The degree exponent sum energy for I'¢; is
1. for n is odd, Epgs(T'g) = 4(n —2)"~1 +4(n — 1), and

. 20, ifn = 4,
2. forn is even, Epps(I'g) = { An— 32+ d(n —1), ifn >4,

Theorem 5 (Ref. [14]). Let G = G1 U Gy. The maximum degree and minimum degree energies for
I'q are

1. for n is odd, Extaxp(T'a) = Eyinp (Tg) = 2(n — 2)?, and
2. for n is even, Entaxd(T'g) = Enminp(Tg) = 2(n — 3)% + n.

3. Results

This section will present the results of commuting graph energy for Do, using the corresponding graph
matrices related to the degree of vertices of I'. This only applies to n > 3, as Da, is abelian for n =1
and n = 2.

3.1. Geometric-arithmetic energy

Theorem 6. Let G = Gy U G,y. The geometric-arithmetic energy of I'g is
1. forn is odd, Ega(Tg) = 2(n —2), and

2. forn is even, Ega(I'q) = 2(n — 3) + n.

Proof.

1. As is well acknowledged for the odd n, Z(Da,) = {e} indicates that there are 2n — 1 vertices
in [g. We write the set Gy as {a,a?,...,a" '} and Go as {b,ab,a®b,...,a" 'b}. From the fact
that Cp,, (a') = {e,a,a?,...,a" '}, thus the vertex a’, for i = 1,2,...,n — 1 always has an edge
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with all members of G1, nonetheless, it is not adjacent to every vertex in Ga. The centralizer of
a’b is {a,a’d} is indicating that for i = 1,2,...,n, the vertex a’b is not adjacent with all other
components of G; U Gy. Considering Theorem 2 (1), we have d n — 2 and dgi, = 0, for all

24/ (n—2)(n—2) -1

1 <4 < n. Then for the adjacent two distinct vertices, the entries of GA(T'¢) are Py ;)
and zero otherwise. Now from Definition 1 and Theorem 3 (1), we acquire the geometric-arithmetic
matrix of I'g is a (2n — 1) x (2n — 1) matrix

J—1I n— On— n
S e 2

(Ii:

The characteristic formula of GA(I'q) is

Paarg)(N) =
Employing Lemma 1, with a =1, b=c=d =0, ny =n — 1 and no = n, we then get
PoareyN) = A+ 1" A" (A = (n—2)).
It implies that GA-spectrum of I'¢ is
Spec(I'g) = {(n — 2)1, (0)", (—1)”_2} .

By direct calculation, we obtain the following geometric-arithmetic energy of I':

()\ + 1)In—1 - Jn—l O(n—l)xn
Onx(n—l) Ay

Eaa(Ta) = (n=2)| = 1[4+ (n)|0] + |n — 2[ = 2(n — 2). (2)

2. Given that n is even where Z(Da,) = {e,a?} means that we have 2n — 2 vertices in I'g, for
G = G1 UGy, with n — 2 vertices a', 1 < i < 3, § < i < n, and n vertices a'b, 1 < i < n.
We designate the set G7 as {a,a2,...,a%_1,a%+l,...,a”_l} and Gy as {b,ab,a?b,...,a" " 'b}.

Repeated application of Theorem 2 (2), we have d,; = n — 3 and d i, = 1. On the other hand, to
construct GA(I'g), we use Definition 1 and Theorem 3 (2), so we obtain (2n — 2) x (2n — 2) matrix
as follows:

O%X(n—Q) I% On

Therefore, the characteristic formula of GA(I'¢) is derived from the subsequent determinant:

A+ 1D In2—Jn2 Op-2xn Om-g)xn

Poare)(A) = 02 % (n-2) /\I% —In . (4)
02 x (n—2) —I3 ALy
According to Theorem 1 with
A=[A+1)In2— Jns], (5)
B= [O(n—2)><n], C= [Onx(n—2)]a and
D= )\I% —I% 6

then Equation (4) is the form Pgar,)(A) = |A]|D] (since C' = 0). Now we consider the matrix
determinant in Equation (5). By using Lemma 1 with a =b=c=d =1, and ny = ny = "T_Q, it is
determined that

Al = A+ 1)" (A = (n - 3)). (7)
Concurrently for the matrix determinant of Equation (6), we have C; and CZ-’, which are the i-th
column and its new i-th column after a column operation of |D|, respectively. By applying the row
operation RI%H =Rz — R, following by CZ{ =C; + C%H on Equation (6), for every 1 <i < 3,
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then we see that

(A=D1 n —1In
PI=1 0 7 e (®)
2 2
Due to Equation (8) being the determinant of an upper triangular matrix, then we have
|D|:‘(/\—1)I% A+ DIz = (A +DE(N - 1) (9)
Using Equations (7) and (9), consequently
3n—6 n
PeargyN) =(A+1) 2 (A-(n=3))(A-1)2.
Here GA-spectrum of I'g is
Spec(Ta) = {(n—3), (), (-1)"=" }.
In the end, by direct calculation we obtain
n 3n —6
Eca(lg) = (W)ln =3[+ S|+ —5—[-1]=2(n - 3) +n (10)
|

3.2. Symmetric division deg energy

Theorem 7. Let G = G1 UGy. The symmetric division deg energy of I'g is

1. forn is odd, Espp(I'c) = 4(n — 2), and

2. forn is even, Espp(T'¢) = 4(n — 3) + 2n.

Proof.

1. By considering the properties from Theorem 2 (1) for the odd n that d,; = n — 2 and d,:, = 0, for
alli=1,2,...,n in conjunction with Definition 2 and Theorem 3 (1), similar to the labeling of G
and Gz in Theorem 6 (1), then SDD(I';) is a matrix with dimension (2n — 1) x (2n — 1) as given
below:

2(J - I)n—l O(n—l)xn

Onx(n—l) On,
Then from Equation (1), one can easily see that, SDD(I'¢) = 2- GA(I'¢). From the relation in
Equation (2), the symmetric division deg energy of I'g is equivalent to

Espp(Te) =2 Ecga(Ta) =2-2(n —2) =4(n - 2).

2. Using the same reasoning as the proof of Theorem 6 (2) for n is even, we get the adjacency re-
lation between two vertices by following Theorem 3 (2). Combining it with Theorem 2 (2) and
Definition 2, clearly that we can construct SDD(I'g) of size (2n —2) x (2n — 2):

SDD(T'¢) =

2(J = Dn—2 Op—2)xz Om-2)x2

SDD(I'¢g) = 0%><(n—2) 0% 21% =2-GA(Tq).
02 x(n—2) 21 On
Consider the matrix in Equation (3), then SDD(I'¢) = 2- GA(I'¢). Applying Equation (10), we
obtain:
Espp(T'g) =2- EGA(Pg) =2(2(n—3)+n)=4(n—3) + 2n. (11)
|

3.3. Degree exponent energy

Theorem 8. Let G = Gy U G,y. The degree exponent energy for I'g is
1. forn is odd, Epg(T'g) = 2(n — 2)"~ ' +2(n — 1), and

10, ifn=4

2. forn is even, Epg(I'g) = on— 324 2n—1), ifn>A4.
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Proof.
1. From the first case n is odd, based on Theorems 2 (1), 3 (1) and Definition 3, we can construct

DE(T'g) of order (2n—1) x (2n—1). We label G; and G in the same way as proving Theorem 6(1).
Therefore,

DE(I'g) = |: (n— Z)N—Q(J —I)p J(n—1)><n :| '

Onx(n—l) (']_ I)n
The characteristic formula of DE(I'g) can be states as
B A+ (n— 2)n—2)1n_1 —(n— 2)"_2Jn_1 _J(n—l)xn
PDE(FG)()‘) = O (n1) AN+, — J, (12)

Let ny=n—1,ng=nanda=(n—2)""2% b=c=1,d=0, then directly form Lemma 1, we can
declare Equation (12) as

Popre)(N) = A+ =2)" )" 2+ )" A = (n = 2)" (A — (n - 1)).
Since DE-spectrum of I'g is
n— n— n—o\n—2
Spec(Ta) = { (0= 2)"")", (0 = 1), (=)™, (~(n - 22"},
then we easily conclude that the degree exponent energy of I'c is
Epp(Tg)=(n—2)|—-(n—2)"2|+ (n—-1) -1+ |n—2)""|+n— 1] =2(n—2)""" +2(n—1).

2. Similar discussion for the even n, again from Theorems 2 (2), 3 (2) and directly from Definition 3,
then DE(I'¢) is a (2n — 2) x (2n — 2) matrix:

(n—3)"_3(J—I)n_ (n_?’)Jn— Xn
DE(l'g) = [ Tt 2 T _(I)n2) ] .

1

It follows that
P () = A+ (=3 2—(n—=3)"3) o —(n-— 3)J(n—2)><n
PEe) ~Jux(n-2) A+ DI = Ty
From Lemma 1, with a = (n —3)" 3, b=d =1, ¢=n—-3,n = n—2 and ny = n, then
Equation (13) can be written as
n—3\n—3 n—
PDE(FQ)()‘) = ()\ + (Tl — 3) 3) ()\ + 1) 1
x(M=n—1+n-3)" A+ nm-1)n-3)"2-nn—-2)(n-3)).
Note that the quadratic formula gives two conditions. For n = 4, in this situation, we have
Epg(T¢) = 10, whereas for n > 4, the DE-energy for I'¢ is

Epe(Tg) = 2(n —3)" "2 +2(n — 1).

(13)

3.4. Inverse sum indeg energy

Theorem 9. Let G = G1 UGy. The inverse sum indeg energy of I'g is
1. forn is odd, Fisi(T'g) = (n — 2)?, and

2. for n is even, Eig1(Tg) = (n —3)? + 2.

Proof.

1. From the first case, when n is odd, in the same manner as proving Theorem 6 (1), and according
to Definition 5, then we can construct ISI(I'¢) of order (2n — 1) x (2n — 1) as follows:

n=2 —
nx(n—1) n

In the light of the proofing part of Theorem 3.2 (1) in [14], then the immediate expression of
Equation (14) is

1 1
ISI(T') = 5 - MaxD(I'g) = 7 - MinD(T'g),
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which implies from Theorem 5, the inverse sum indeg energy of I'g is
1 1
Fs1(Tg) = 5MaxD(rG) =5 2(n —2)? = (n — 2)%.
2. Again, in the same way as proving Theorem 6 (2) for n is even, and combining with Definition 4,
clearly that we can construct a (2n — 2) x (2n — 2) matrix, ISI(I'¢) as follows:

B3 = Do On—2)x 2 U(nl_z)xg
ISI(T'e) = 0n % (n-2) 105 31z - (15)
02 x(n—2) odn On

Invoking the proofing part of Theorem 3.2 (2) in [14], in other words, Equation (15) can be written
by
1 .
ISI(Tg) = 3 -MaxD(I'g) = 3 MinD(I'g).

Therefore,

1 1 n
Eii(Ta) = gEMaxD(PG) = 5(2(71 —3)+n)=(n-37°+ 5

which, due to Theorem 5, proves the theorem.

3.5. Sombor energy

Theorem 10. Let G = Gy UGy. The Sombor energy of ' is

1. for n is odd, Es(Tg) = 2v/2(n — 2)?, and

2. forn is even, Eg(T'g) = 2v/2(n — 3)? + /2n.

Proof.

1. Given n is odd, we have the same way of labeling G; and G5 as a proof of Theorem 6 (1). By
Definition 5, the properties of Theorem 2 (1), and also the form of I'¢ in Theorem 3 (1), then
matrix S(I'g) of size (2n — 1) X (2n — 1) is as given below:

S(FG) — \/i(n - 2)(J - I)n—l O(n—l)xn
0n><(n—1) O
Combining the last matrix with the proofing part of Theorem 3.2 (1) in [14], we conclude that
S(Tg) = V2 -MaxD(T'¢) = V2 - MinD(I'g).
Using Theorem 5 (1), from the above equation, we obtain the Sombor energy of I'¢,
Es(rg) = \/iEMaxD(Fg) = 2\/5(71 — 2)2.

2. For the second case, by the same method as a proof of Theorem 6 (2) and using Definition 5, we
also obtain a similar result for even n. Then the Sombor matrix of I'g of size (2n — 2) x (2n — 2)
follows immediately,

V2(n=3)(J = Dn-2 On-2)xz  Om—2)x2

S(Ta) = 02 (n-2) On V2rs |
02 x(n—2) V2In On

and S(I'g) = V2 -MaxD(T'g) = v/2 - MinD(I'g) as a consequence of the proofing part of Theo-
rem 3.2 (2) in [14]. Consider Theorem 5 (2), we then obtain

Es(Tq) = \/iEMaxD(Pg) = 2\/5(71 — 3)2 +v/2n.

4. Discussion

By inspecting the results in Theorems 6-10, it is possible to derive several conclusions from the given
energies. The connection between energies yields the following two corollaries.
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Corollary 1. Let G = G U Go, then
1. Eisi(Tg) = %2 - Es(Tc).

2. ESDD(Fg) =2 EGA(Fg).

3. Epe(Te) = 3 - Epes(Ta).

Corollary 2. Let G = G U Go, then
Eca(T'g) < Espp(T'e) < Eisi(T'e) < Es(T'q) < Epe(l'g) < Epes(T'a).

For the commuting graph for dihedral groups, from Corollary 1, it can be seen that there are
three clusters of the relationship between degree-based energies. Besides, the ordering of the obtained
energies in Corollary 2 shows that the two largest ones are the degree exponent sum energy and degree
exponent energy. The definition of DES and DE matrices consider the non-diagonal and diagonal
entries, while the other matrix definitions require the adjacency relation between two vertices in I'.
We also conclude that the lowest is the geometric arithmetic energy.

Furthermore, the geometric-arithmetic energy, symmetric division deg energy, and degree exponent
energies are always a positive even integer as well as the maximum degree energy, minimum degree
energy, and degree exponent sum energy from the previous result. On the other hand, the inverse sum
indeg energy is a positive integer that can be either even or odd. Meanwhile, the Sombor energy is
never an odd integer. More specifically, this paper’s energy formulas are never the square root of an
odd integer, except ISI-energy.

5. Conclusion

In this work, we determined the explicit formulas of the degree-based energies of commuting graphs
for dihedral groups and also obtained the comparison and the ordering of the given energies.
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EHeprii komyTytouoro rpacha gnsa giegpuyHux rpyn
Ha OCHOBI CTeneHiB

Pomzini M. V., Hasasi A2

L Kagpedpa mamemamury, Garyiomem Mamemamury ma npupooHususT Hayx,
Vuisepcumem Mamapam, Mamapam 83125, Indonesis
2 Kaedpa mMamemamury ma Cmamucmuky, Gaxyivmem npupooruMus Hayx,
Yuisepcumem Iympa Manaiizia, 43400 Cepdane, Cenaneop, Manratizis

Komyryrounii rpad muist ckingerHol rpynu G, 1o mo3HadaeThes I'g, 3 MHOXKUHOO BEPIINUH
G\Z(G), ne Z(G) — uenurp G, € rpadom, B AKOMY Uy, vy € G\Z(G), v, # vy € CyMmix-
HEMIH, SIKIIO UpUq = VUqUp. OCTAHHIMM POKAMH IPOBOIUINCS 3HAUHI JIOCITiXKEHHsI eHeprii
rpadiB, 30KpemMa 3 aKIEHTOM Ha MATPUIL, HOB’s3aHi 31 cremensmu Bepmua. Came mum i
OyJ10 MOTHBOBAHE HaIlle JOC/IKEHHsI, sTKe PUCBsIeHe eHeprii ['g 71 JiepabHuX IPYyIL
opsaaKy 2n, Doy, CTOCOBHO JedKUX rpadOBUX MaTPHUIlb, OB’ I3aHUX 3i CTEIeHEM eJIeMeH-
TiB Doy, \Z(Da2y,), Ta BUBYEHHIO KODEJIAIIT MiK UMK eHeprisMu. 10 pO3IJISHY THX MATPHUIH
HaJIe2KaTh FeOMEeTPUYHO-apudMETUIHA, CHMETPIUYHA MATPUIH JTiJI€HHS CTEIEeHIB, MaTPUILA
CTeleHi eKCIIOHEHT, MaTpullsd obepHeHol cymu creneniB ta marpuis Combopa. Ha ocHosi
[UX I'TU MATPUIL OYJI0 BCTAHOBJIEHO, IO HAWMEHIy eHeprio rpada Mae reOMeTPUIHO-
apudmerndHa eHepris ['g, Toal 9K HalBUILy — eHepris MoKa3HWKa cremeHi. Kpim Toro,
reoMeTPUIHO-apUMMETUIHA, €HEPrisl, €HePTisd CUMETPUIHOrO JIiJIeHHsI CTEIeHIB Ta eHepris
[TOKA3HUKA CTEIeHs 3aBXK U € JOJATHUMU MapPHUMH IiiauMu yncjiamu. HaroMicTs, eHepria
00epHEHOI CYMHU CTEIEHIB € JOJATHUM I[IJIUM 9YHCJIOM, siKe MOXKe OyTH siK IMapHUM, Tak i
menapanM. Erepris CoMmbopa HIKOIM HE € HEapHUM IIJIUM YUCJIOM.

Knw4osi cnosa: xomymyrouwull 2pag; enepeis 2pada; mampuyi Ha 0CHOGE CMeEnemis;
diedpanvha 2pyna.
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