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Bias correction quantile mapping (BCQM) has become a pivotal tool in climate science,
particularly for refining the outputs of Global Climate Models (GCMs) and Regional Cli-
mate Models (RCMs) at local scales. While GCM outputs are invaluable for understanding
climate change, their coarse resolution introduces uncertainties requiring downscaling tech-
niques like BCQM. This review paper explores the advancements, practical applications,
and limitations of BCQM methods, emphasizing their critical role in improving climate
projections. BCQM operates by mapping observed data distributions to model outputs,
thereby correcting biases and enhancing model accuracy. Recent developments have led
to significant improvements, such as the successful application of multivariate BCQM in
capturing complex climate interactions and hybrid empirical BCQM techniques that im-
prove performance in extreme climate conditions. These methods have been effectively
implemented in diverse regions, leading to more accurate temperature and precipitation
projections, which support critical sectors like agriculture, water resource management,
and disaster preparedness. Furthermore, BCQM has been instrumental in refining seasonal
forecasts and long-term climate projections, providing valuable insights for policymakers
and stakeholders. Despite these advancements, BCQM still faces challenges, such as the
inability to correct for inherited GCM errors, poor representation of wet/dry spell occur-
rences, and limitations in extreme event correction. The review highlights the need for
further research to address these challenges, particularly in the context of extreme cli-
mate events and non-stationarity biases. The paper calls for more robust BCQM methods
that can handle the increasing complexity and volume of climate data, offering reliable
projections for future climate scenarios. By refining BCQM techniques and incorporating
additional climate factors, researchers can improve the accuracy and dependability of cli-
mate projections, ultimately aiding in better decision-making and risk assessment in the
face of climate change.
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1. Introduction

Global Climate Models (GCMs) and Regional Climate Models (RCMs) are essential tools in climate
science, providing critical data for understanding and predicting climate change. However, the coarse
spatial resolution and inherent structural limitations of these models often introduce biases that can
compromise the accuracy of climate projections. These biases require the use of downscaling tech-
niques such as Bias Correction Quantile Mapping (BCQM), which adjusts model outputs to align
more closely with observed historical records, thereby improving the accuracy of local-scale climate
projections. BCQM has become increasingly important as climate scientists and policymakers seek
more reliable projections to support decision-making. The technique works by mapping observed data
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distributions onto model outputs, correcting systematic biases in variables such as temperature, pre-
cipitation, and wind speed. This correction is particularly crucial for extreme events, which are often
poorly represented in coarse-resolution models but have significant implications for climate risk as-
sessment and management [1]. Despite its widespread use and growing advancements, BCQM is not
without its challenges. A critical limitation is its inability to correct for inherited errors from GCMs,
which may propagate uncertainties into the downscaled projections. Additionally, BCQM struggles
with non-stationarity biases, where relationships between climate variables change over time due to
evolving climate conditions potentially reducing the reliability of future projections. Moreover, the
technique often encounters difficulties in accurately representing wet/dry spell occurrences and cap-
turing the full range of climate extremes, which can significantly impact applications in water resource
management, agriculture, and disaster preparedness. This review paper explores the advancements,
performance, and limitations of BCQM methods, with a particular focus on their application in climate
projections. It examines recent innovations, such as the integration of skewed probability distributions
and additional climate factors, and discusses ongoing challenges, particularly in predicting extreme cli-
mate events and addressing non-stationarity issues. By providing a comprehensive overview of BCQM,
this paper aims to highlight areas where further research is needed to enhance the reliability of climate
projections and support better decision-making in the face of climate change [2].

2. Overview of quantile mapping (QM) and its applications

Quantile Mapping (QM) is a widely employed statistical technique used to correct biases in climate
model outputs. The technique works by adjusting the distribution of model-simulated data to match
observed data distributions, thereby mitigating systematic biases and improving the accuracy of climate
projections. QM is particularly effective for correcting biases in climate variables such as temperature,
precipitation, and wind speed, which are crucial for accurate climate modelling. QM methods have
been extensively applied in downscaling GCM and RCM outputs to finer spatial resolutions, making
them more relevant for local-scale studies. For instance, QM has been used to correct precipitation
data, leading to more accurate flood risk assessments and better water resource management [3].
However, the existing QM methods have limitations, particularly in handling extreme weather events.
These events, which often reside in the tails of the distribution, are frequently misrepresented in model
outputs, leading to inaccuracies in projections. These events are crucial for understanding the full
range of potential impacts of climate change, but their representation in models is often inadequate.
In particular, the existing QM methods, typically assume a symmetric distribution of climate variables,
which may not accurately capture the skewness inherent in extreme events. This can result in significant
errors in projections, particularly in regions prone to extreme weather such as heavy rainfall, droughts,
or heatwaves. Extreme data points or outliers in a data series can be treated by fitting extreme value
distributions (EVD) in the BCQM. These outliers may be due to measurement errors, data collection
issues, or extreme events. In BCQM, identifying and understanding outliers is crucial for ensuring the
integrity and reliability of data. When properly implemented, BCQM can correct bias and improve
the accuracy of model predictions [4]. The transfer function of BCQM is given as [5],

xcorr = CDF(xo)− 1[CDF(xm)], (1)

where xcorr is the corrected meteorological/hydrological variable between the observed and historical or
estimated model output gridded GCM, xo is the observation, and xm is the historical/estimated model
output gridded GCM. The cumulative distribution functions of the statistical distributions are shown
in Equation (1). Figure 1 illustrates an example of extreme temperature modeling for annual maximum
temperature using the generalized extreme value (GEV) distribution within the BCQM framework.
The figure presents a probability plot comparing the modeled and observed values, where the closer the
data points are to the straight line, the better the model fits the observed data. This visual represen-
tation highlights the effectiveness of GEV in capturing extreme temperature behavior, which is critical
for applications such as climate risk assessment and infrastructure planning. The selection of an appro-
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priate statistical distribution, such as Weibull or gamma distributions, is crucial in BCQM to ensure
accurate representation of the underlying statistical characteristics of climate variables. To address
non-stationarity in climate data, BCQM incorporates covariates such as linear trends and seasonal
components, which help account for changing climate patterns over time [6]. Figure 2 provides further
insights by showcasing boxplots and density plots of extreme temperature series. These visualizations
compare historical GCM outputs with observations before and after bias correction using BCQM with
the GEV distribution. The figure demonstrates how BCQM effectively reduces bias and enhances the
alignment between the GCM projections and observed data, offering more reliable inputs for climate
impact studies. The improved distributional fit after correction underscores BCQM’s role in refining
climate projections for better decision-making in sectors such as agriculture, energy planning, and
disaster management. The log-likelihood functions for nonstationary GEV distribution in the BCQM
are as follows:

Model 1: µ(t) = µ0 + µ1t, σ, and α are constants:
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Model 2: σ(t) = exp(σ0 + σ1t), µ and σ are constants:
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Model 3: µ(t) = µ0 + µ1t, σ(t) = exp(σ0 + σ1t), α is a constant:
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where µ(t) = µ0 + µ1t, and σ(t) = exp(σ0 + σ1t).
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Fig. 1. Example of extreme modelling for annual maximum temperature using generalized extreme distribution.
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Fig. 2. Example of boxplots and density curve of historical GCM, observations,
and corrected BCQM annual maximum temperatures values.

BCQM has been widely applied to address biases in raw data from GCM or RCM combinations [7].
Recently, multivariate BCQM was developed to address the physical inconsistency in univariate cli-
matology BCQM because univariate BCQM tends to ignore the interdependence of variables. It
incorporates multiple climatic factors into BCQM and coherently corrects biases in many climate vari-
ables to represent the climate system more accurately. However, implementing multivariate BCQM
presents significant challenges, particularly in terms of computational demands and data requirements.
On the one hand, substantial computing power is required to process the vast amounts of data in-
volved in bias correction for multiple climate variables. The complexity of multivariate relationships
necessitates iterative computations and high-dimensional statistical modelling, which increases both
processing time and memory requirements. As climate datasets grow in size and resolution, the de-
mand for high-performance computing (HPC) infrastructure becomes a critical limitation, especially
for research institutions with limited access to such resources.

On the other hand, data availability and quality remain major concerns in the implementation
of multivariate BCQM. High-quality, long-term observational datasets with consistent temporal and
spatial coverage across multiple climate variables are essential for accurate bias correction. However,
observational data are often incomplete or inconsistent across different climate variables, introducing
uncertainties in the correction process. Additionally, differences in spatial resolution and observation
periods between model simulations and real-world data further complicate the calibration and valida-
tion of BCQM methods. Ensuring data homogeneity across various sources and filling observational
gaps are ongoing challenges that must be addressed to improve the reliability of bias correction re-
sults. Moreover, the integration of bias correction quantile delta mapping and multivariate copula
BCQM techniques has been tested for bias correction of RCM-simulated precipitation [8–10]. While
these approaches improve the representation of climate extremes, they further increase computational
complexity due to the need for sophisticated statistical modelling and parameter estimation. A hybrid
empirical BCQM (EBCQM) with a linear function, in which the majority of model data are corrected
using EBCQM and the extreme tails are corrected using a linear transfer function, has also been es-
tablished and found to enhance model skill, particularly at the extreme tails. This approach results in
a better representation of climatological indices than what is achievable using conventional empirical
BCQM [11]. However, the hybrid nature of these methods demands additional computational resources
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and careful tuning of parameters to balance bias correction performance with computational efficiency.
In summary, while multivariate BCQM and hybrid methods offer significant advancements in climate
bias correction, their practical application is hindered by the extensive computational power required
and the challenges associated with acquiring and processing high-quality climate data. Addressing
these challenges requires the development of more efficient algorithms, improved observational data
collection efforts, and enhanced access to computational resources to support large-scale climate data
analysis. Table 1 presents a comparative analysis of different BCQM approaches, evaluating their per-
formance in terms of bias reduction, computational efficiency, and applicability across various climate
variables.

Table 1. Performance comparison of different BCQM methods across key parameters.

BCQM Method Bias Reduction Computational Demand Data Requirements

Univariate BCQM Moderate Low Moderate
Multivariate BCQM High High High
Hybrid Empirical BCQM High Moderate Moderate
Quantile Delta Mapping Moderate Moderate High

3. Advances in bias correction techniques

To address the limitations, recent advancements in BCQM have focused on incorporating skewed
probability distributions and additional climate factors. These enhancements aim to improve the
accuracy of climate projections by better representing the distribution of extreme events and accounting
for a broader range of climatic conditions. A significant advancement in BCQM is the integration of
skewed probability distributions, such as the GEV distribution. The existing BCQM methods often
rely on symmetric distributions, which may not adequately capture the skewness inherent in many
climate variables, particularly those related to extreme events. By incorporating skewed distributions,
BCQM can more accurately model the heavy tails associated with extreme events, providing a more
precise correction of biases in the model outputs. The application of skewed distributions in BCQM
has been shown to improve the representation of extreme precipitation and temperature events, which
are often characterized by significant skewness. For instance, in regions prone to heavy rainfall, the use
of a GEV distribution within BCQM has enhanced the accuracy of extreme precipitation predictions,
which is crucial for reliable flood risk assessments and water resource management [12]. In this study,
particular attention is given to the performance of two-shape parameter probability distributions,
namely the Generalized Lindley (GLD), Burr XII (BUR), and Kappa (KAP) distributions. These
models provide greater flexibility compared to conventional probability distributions, which is crucial
for accurately capturing the complex variability inherent in precipitation data. The study aims to
determine whether these distributions can improve the BCQM process and yield a better fit than the
conventional models.

Results from the study indicate that the KAP distribution outperforms both the GLD and BUR
models, particularly in its ability to replicate the statistical characteristics of observed precipitation
data and correct for extreme precipitation events. While the GLD distribution shows a performance
on par with conventional models, the BUR distribution performs less effectively. Notably, the KAP
distribution’s ability to maintain spatial dependence among weather stations further highlights its po-
tential for applications in flood modelling and other climate-related analyses. The study’s findings are
supported by a case study conducted in South Korea, utilizing simulation outputs from the Hadley
Centre Global Environmental Model and observational data from a network of weather stations. The
results demonstrate that the KAP distribution provides the best fit for both observed and simulated
precipitation data, making it a suitable candidate for bias correction in similar contexts. Another
significant advancement in BCQM is the integration of additional climate factors beyond the tradi-
tional focus on temperature and precipitation. Climate variables such as humidity, wind speed, and
atmospheric pressure play crucial roles in influencing regional climate patterns and the occurrence of
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extreme events [13]. By including these factors in the BCQM process, the model can correct biases
across a broader range of climatic conditions, leading to more accurate and robust climate projec-
tions. For instance, integrating wind speed and humidity into BCQM has improved the correction of
temperature-related biases, especially in coastal regions where these factors significantly impact local
climate conditions. Moreover, incorporating large-scale atmospheric phenomena such as the Madden–
Julian oscillation (MJO) into BCQM has further refined the model’s outputs, particularly in regions
where these phenomena are key drivers of climate variability [14]. Several case studies demonstrate the
effectiveness of these enhancements in BCQM. In the Indian subcontinent, the integration of skewed
distributions within BCQM has led to more accurate predictions of extreme precipitation, improving
flood risk assessments and informing better disaster preparedness strategies. In Southeast Asia, incor-
porating MJO phases into BCQM has enhanced the model’s ability to predict extreme rainfall events,
leading to more reliable climate projections and better agricultural planning [15].

4. Challenges and future directions

Despite the significant advancements in BCQM, several challenges remain to be addressed to fully
realize the potential of these techniques. These challenges primarily revolve around computational
complexity, data availability and quality, and non-stationarity in climate variables, all of which pose
significant obstacles to the widespread and effective application of BCQM. Addressing these issues
requires the development of innovative solutions, such as efficient algorithms, improved data infras-
tructures, and the integration of advanced technologies like machine learning.

4.1. Computational challenges

The integration of skewed distributions and additional climate factors into BCQM enhances its ability
to capture extreme climate events, but it also increases computational complexity. The processing
of large datasets with high spatial and temporal resolutions requires sophisticated algorithms and
substantial computational resources, leading to longer processing times and potential feasibility issues,
especially in resource-limited settings. To overcome these challenges, future research should focus on
developing more efficient algorithms that optimize computation without compromising accuracy. This
includes exploring machine learning-driven optimization techniques that can streamline bias correction
processes by identifying patterns and automating corrections. Furthermore, leveraging HPC resources
and cloud-based platforms can help handle the increasing demands of enhanced BCQM models, making
them more accessible to a broader research community [16].

4.2. Data availability and quality

The success of enhanced BCQM methods is highly dependent on the availability and quality of ob-
servational data, which are crucial for calibrating and validating bias correction models. However,
many regions, particularly developing countries and remote areas, face significant data gaps and in-
consistencies that hinder the accuracy of BCQM applications. Poor spatial and temporal coverage
of climate variables limits the effectiveness of bias correction, resulting in uncertainties in climate
projections. Addressing these limitations requires concerted efforts to improve data collection and ac-
cessibility. Investment in new observation networks, enhancement of existing data infrastructures, and
the development of advanced data assimilation techniques can help bridge data gaps. Additionally,
using machine learning algorithms to impute missing data and improve data quality can enhance the
reliability of climate projections [3]. Strengthening collaboration between governmental and private
entities for data-sharing initiatives can further support these efforts.

4.3. Non-stationarity in climate variables

One of the most pressing challenges in climate modeling is the non-stationarity of climate variables,
particularly concerning extreme events. Non-stationarity refers to the changing statistical properties
of climate variables over time, which complicates the application of traditional statistical techniques
like BCQM. The inherent variability in climate trends, such as shifts in precipitation patterns and
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temperature extremes, requires dynamic approaches to bias correction. Future research should focus
on developing adaptive BCQM models that incorporate time-evolving statistical parameters and ac-
count for long-term trends and seasonal variations. The integration of artificial intelligence (AI) and
machine learning techniques, which excel in identifying patterns within complex datasets, can signifi-
cantly enhance the adaptability of BCQM to non-stationary environments. Developing hybrid models
that combine statistical and AI-based approaches could further improve BCQM’s performance under
changing climate conditions.

4.4. Future research directions and international collaboration

Moving forward, addressing these challenges will require a multifaceted approach that combines tech-
nological advancements with strategic policy initiatives. Encouraging interdisciplinary research that
brings together climate scientists, data scientists, and policymakers will be key to developing practical
BCQM solutions. Additionally, international collaborations and technology transfer play a critical
role in addressing global disparities in BCQM application. Many developing regions lack the technical
capacity and infrastructure to implement advanced BCQM techniques, creating disparities in climate
risk assessment and adaptation planning. Collaborative initiatives between developed and developing
countries, knowledge-sharing programs, and capacity development efforts can help bridge this gap. For
instance, technology transfer agreements can facilitate access to cutting-edge computational tools and
methodologies, while partnerships with international climate organizations can support data-sharing
frameworks that enhance global climate resilience.

In conclusion, while BCQM has demonstrated significant potential in improving climate model
accuracy, addressing the challenges of computational complexity, data availability, and non-stationarity
is critical to its broader application. Through continued advancements in algorithm development, data
infrastructure improvements, and global collaboration, BCQM can become an even more robust tool
for climate risk management and decision-making.

5. Conclusion

The integration of skewed probability distributions and additional climate factors into BCQM rep-
resents a significant advancement in climate modelling, improving the model’s ability to accurately
capture and represent extreme climate events. These enhancements allow BCQM to better reflect
the complexities of climate data, particularly in the context of extreme weather events, leading to
more accurate predictions and more informed decision-making. However, challenges related to com-
putational complexity, data availability, and non-stationarity must be addressed to fully realize the
potential of these advancements. By continuing to refine BCQM techniques and incorporating com-
prehensive climate data, researchers can enhance the model’s performance and provide more reliable
climate projections, ultimately aiding in better decision-making in the face of climate change.
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Досягнення та проблеми квантильного вiдображення з корекцiєю
змiщення для клiматичних прогнозiв: комплексний огляд

Халiм С. А.

Кафедра математики та статистики,
Факультет природничих наук, 43400 Серданг, Селангор, Малайзiя

Корекцiя змiщення квантильним вiдображенням (BCQM) стала ключовим iнстру-
ментом у клiматологiї, особливо для уточнення результатiв глобальних клiматичних
моделей (GCM) та регiональних клiматичних моделей (RCM) на локальних масшта-
бах. Хоча результати GCM є неоцiненними для розумiння змiни клiмату, їхня гру-
ба роздiльна здатнiсть створює невизначеностi, що вимагають застосування методiв
зменшення масштабу, таких як BCQM. Ця оглядова стаття дослiджує досягнення,
практичнi застосування та обмеження методiв BCQM, пiдкреслюючи їхню вирiшаль-
ну роль у покращеннi клiматичних прогнозiв. BCQM працює шляхом вiдображен-
ня розподiлiв спостережуваних даних на результати моделей, тим самим коригуючи
змiщення та пiдвищуючи точнiсть моделей. Недавнi розробки призвели до значних
покращень, таких як успiшне застосування багатофакторного BCQM для врахування
складних клiматичних взаємодiй та гiбридних емпiричних методiв BCQM, що покра-
щують ефективнiсть в екстремальних клiматичних умовах. Цi методи були ефективно
впровадженi в рiзних регiонах, що призвело до бiльш точних прогнозiв температури
та опадiв, якi пiдтримують такi критично важливi сектори, як сiльське господарство,
управлiння водними ресурсами та готовнiсть до стихiйних лих. Крiм того, BCQM вiдi-
грає важливу роль в уточненнi сезонних прогнозiв та довгострокових клiматичних
проекцiй, надаючи цiнну iнформацiю для полiтикiв та зацiкавлених сторiн. Попри цi
досягнення, BCQM все ще стикається з викликами, такими як нездатнiсть коригувати
успадкованi помилки GCM, недостатнє вiдображення сухих/вологих перiодiв та об-
меження в корекцiї екстремальних подiй. Огляд пiдкреслює необхiднiсть подальших
дослiджень для вирiшення цих проблем, зокрема в контекстi екстремальних клiма-
тичних явищ та проблем їх нестацiонарностi. Стаття закликає до розробки бiльш
надiйних методiв BCQM, якi зможуть обробляти зростаючу складнiсть та обсяг клi-
матичних даних, пропонуючи надiйнi прогнози для майбутнiх клiматичних сценарiїв.
Удосконалюючи методи BCQM та включаючи додатковi клiматичнi фактори, дослiд-
ники можуть пiдвищити точнiсть та надiйнiсть клiматичних прогнозiв, що зрештою
сприятиме кращому ухваленню рiшень та оцiнцi ризикiв в умовах змiни клiмату.

Ключовi слова: квантильне вiдображення з корекцiєю змiщення (BCQM); клi-
матичнi прогнози; даунскалiнг; глобальнi клiматичнi моделi (GCM); екстремальнi
подiї.
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