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Non-response in a survey refers to the absence of data from selected participants who
fail to provide information for various reasons. Imputation is one of the most effective
techniques to address non-response in sample surveys and ensure data completeness. The
most commonly used imputation methods are mean imputation, ratio imputation, and the
compromised imputation method. Mean imputation replaces all missing values with the
mean of the responded values, thus reducing the variability in the data set. To maintain
a proportional link between variables, the ratio imputation technique is useful, although
it assumes a strong linear relationship between the study and auxiliary variables, which
may not always hold. If violated, this can lead to biased results. The compromised
imputation method combines several techniques but still has limitations and may produce
biased outcomes when underlying assumptions are not met. To address these issues, we
propose three Exponential-Inverse Sine-Logarithmic (ESL) imputation techniques along
with their corresponding point estimators. We derive the bias and mean square error
(MSE) of the proposed estimators and evaluate their performance both theoretically and
numerically in comparison with existing methods. Additionally, simulated population data
sets were generated using statistical software to conduct simulation studies. Percentage
relative efficiencies (PRE) were calculated to compare the performance of all estimators
with respect to the mean and ratio methods. Based on the results, we conclude that the
proposed imputation techniques outperform the existing ones.

Keywords: simple random sampling; imputation; bias; mean square error (MSE); per-
centage relative efficiency (PRE); simulation study.
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1. Introduction

In sample surveys, missing data or missing values occur when a chosen respondent refuses to participate
in a survey for various reasons. Various techniques are available to handle the problems of missing data.
One of the best techniques to deal with missing data is imputation. In finite population sampling,
Meeden [1] discussed a theoretic approach to imputation. Lee and Sardal proposed an imputation
technique known as the ratio method of imputation. Later, an improved imputation technique named
as the compromised imputation technique was developed in [2]. Singh et al. [3] proposed exponential
type imputation technique for missing observations. Prasad [4] proposed product exponential method of
imputation. Singh et al. [5] developed some logarithmic and sine-type imputation techniques. Pandey
et al. [6] proposed some new logarithmic-type imputation methods for handling missing data. Later,
Singh and Gogoi |7] proposed exponential dual to ratio type compromised imputation techniques.

Consider a sample S of size n drawn from a finite population €2 of size N without replacement. Let
Y be the study variable and X be the auxiliary variable. Y and X are the population means of the
variables Y and X respectively given by

i=1 i=1

872 (© 2025 Lviv Polytechnic National University



Study of some exponential-inverse sine-logarithmic imputation techniques under missing data ... 873

Let the sample consist of r responding units, which form the set Re, and (n —r) non-responding units,
which belong to the set Re®.

2. Some known methods of imputation

2.1. Mean method

In this imputation method, each non-response data is replaced with the mean of the responded data.
Here

L yi, if 7 € Re,
Y17\ 7., if i € Re“.
The unit estimator of the above imputation method is given by
_ 1 _
Ys = Ezyl =Y
€S

where 7, = % > icRe Yei-
Bias, B(+) of the above point estimator y, is

B(y,) = 0.
The MSE of the above unit estimator y, is
MSE (7,) = YA, nCE.
2.2. Ratio method
This method, proposed by Lee and Sardal [§],
i, if 7 € Re,

yi:{ ax;, if i € Re®,

Ziel‘{e Yi

i€Re Ti '
The unit estimator of the above imputation method is given by

where ¢ =

_ _ T
YRAT = Z/rf—T,
Where yT = %ZiERe Y.is f’r‘ - %ZieRe Ty, En = % Z’iES L
The bias of the above unit estimator ygaT is
_ =2
B (Urar) =Y Arn (1= pyx) C&.
The MSE of the above unit estimator yrar is
_ =2
MSE (Tgar) =Y {ANCY + A (1 — 20y x) CX )
2.3. Compromised method
Under this imputation technique, the data take the form
| atyi+ (1 —«a)ax;, if i€ Re,
Y= (1 - a)ax;, if i € Re®,
where « is a chosen constant.
The unit estimator of the above imputation method is given by

Ycomp = ¥, + (1 — a)@«%~
The bias of the above point estimator ycomp is '
B (Jcomp) = YArn (1 - @) (1 - ¢yx) C%.
The MSE M (-) of the above unit estimator ycomp is
M Geomp) =Y [ArnCE + A {(1 — @)? = 2(1 — @)pyx } C%] .

The MSE of the resultant estimator achieves its minimum at aopy = 1 — ¢y x.

Mathematical Modeling and Computing, Vol. 12, No. 3, pp. 872-881 (2025)
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Hence, the optimum mean square error (MSE) is given by
_ —2
MSE (Jcomp)opt =Y (Arv — Arnp¥x) CF,

where pyx is the Pearson’s correlation coefficient between the study variable Y and the auxiliary

variable X and
N N

1 -\ 2 1 —\ 2
S% = —— — X Sf = —— i —Y
X N—1;($Z ). sy N—1;(% )
are the population mean squares of the study variable Y and the auxiliary variable X, respectively.

Let
by = pyx 2
YX—PYXCX,

where C?2 _ 5% and C2 _ 5 and g = &
X 1Y 1 v 1 N_ln' 11
Consider Ay n= (5 = %); Anv= (3 = %) Aen= (7 = 7).

3. Proposed imputation techniques and corresponding estimators

The three imputation techniques with their corresponding point estimators are suggested as follows
Yis if 7 € Re,

N B
(1) (v, ﬁgr |:n exp |:a sin~! {1 _ (llrlfll%) }:| - 7’:| , if i € ReS,

where a and 8 are suitably chosen constants.
The point estimator of the population mean Y in the proposed imputation method is

o +\ 5
YpsL1 = Yr €Xp [O‘Sln : {1 - <11§—§)i> H ’
Yi, if 7 € Re,
2 N = ) B o
(2 W nirgT [n exp [a sin—! {1 _ <111111§n) H - r] , if i € Ref,

where @ and 8 are appropriately chosen constants.
The point estimator of the population mean Y in the proposed method of imputation is

+\B
YEsL2 = Yr €Xp [asin‘l {1 _ (}3%) H 7
Yi, if i € Re,
. _ N
o [n P [O‘ sin”! {1 - (B2) H - r] . if i € Ret,

where « and [ are suitably chosen constants.
The point estimator of the population mean Y in the proposed method of imputation is

L —_\B
YBsL3 = Yr €XP [04 sin”! {1 - (%) H : (3)

4. Properties of the proposed point estimators

>

—
—_
N

|

—
V)
~—

To determine the bias and mean square error (MSE) of the proposed imputed estimators, we write

Y=Y Tr—X Tn—X
&1 =5 e=7%, €="%"

Y
such that |e;| < 1, where i =1,2,3.
Here, we have

E(el) = E(EQ) = E(€3) =0
and
E(ed) = \nO2, E(e3) =\ n0%, E(e}) = \n0%,

E(eres) = M\ npyxCyCx, Elezes) = \anC%, El(eres) = Ay npyxCOyCx.
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4.1. Bias and MSE of yggr1

Let k = ﬁ Now we express the logarithm of the sample mean of size r, T, as

InZ, = X(1+ez) =InX +1In(1+ e3).
Assuming that |es| < 1, we expand In(1 + e3) up to second-order approximation as
_ — e e e — ke3
nz,=hX+|lee——=+=—-——=+...]=~InX 1+k62—7 . (4)

Using Equation (4) in Equation (1), expanding the proposed estimator Jpgr,; up to second order in
terms of e;’s, we have

aBk(1 + 2k + Bk — k — apk)
2

Taking expectations on both sides of Equation (5) and rewritten as

Upsta ~ Y [1 +e1 + aBkes — e+ a5k€1€2:| . (5)

E(Ypsin —Y) =YE [045/%162 _ aBk(L+ 2k +2ﬁk —k — afk) e%} ) (6)
Now, using the results of E (e3) and E (e1e2) in Equation (6), the bias of Jggy, is
B (Fgsri) = aBkY A v <¢YX Lk 5]; L aﬁk) C%- (7)
Squaring both sides of the Equation (5) and taking expectations up to second order, we have
E (Jgst1 — ?)2 ~Y’E [e% + o?5%k%es + 2afBkeres] . (8)
Putting the results of E (1), E (e3) and E (ejez) in Equation (8), the MSE of Jrgy, is given by
MSE (Jgsp1) = Y Arw [CF + aBk(afk + 20y x)C%] . ()

Differentiating Equation (9) with respect to o and equating the derivative to zero, the optimal value
of a is

_ 9vx
Qopt = —W

Putting the optimal value of v in Equation (9), we get the asymptotic optimum mean square error of
the estimator (Ypgy,;) as

_ =2
MSE (yESLl)opt =Y AN (1 - P%/X) 012/~ (10)

4.2. Bias and MSE of ygg-

Let k = ﬁ Now we express the logarithm of the sample mean of size n, T,, as
InZ, = X(1+e3) =InX +1In(1+ e3).
Assuming that |eg] < 1, we expand In(1 + e3) up to second-order approximation as
. 2 3 4 o Le2
Inz, =InX + <63—%3—|—%—%3—|—...> ~ In(X) <1—|—k,’€3—%>. (11)

Using Equation (11) in Equation (2), expanding the proposed estimator Jpgp» up to second order in
terms of e;’s, we have

afBk(1 + 2k + Bk — k — afk)
2

Taking expectations on both sides of Equation (12), we rewrite it as

E (Jpsiy ~Y) =YE [aﬂkeleg aBk(l + 2k + Sk — k — apk) 2}

Upsta =Y [1 +e1 + aBkes — ez + 0451{76163:| . (12)

5 es| . (13)

Now, using the results of E (e3) and E (e1e3) in Equation (13), the bias of Jggr is
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_ — 142k + Bk —k— apfk
B (YesL2) = aBkY Ay n <¢YX - 5 > C%. (14)
Squaring both sides of Equation (12) and taking expectations up to second order, we have
FE (yEsm — 7)2 —Y°E [e% + a2ﬁ2k‘2e§ + 2@51{:6163] . (15)

Substituting the expressions for E (e}), E (€3) and E (ere3) in Equation (15), the MSE of Fpgp, is
given by

MSE (Trgra) = Y [AnnCE + aBkA, n (aBk + 26y x) C%] . (16)
Differentiating Equation (16) with respect to o and equating the derivative to zero, the optimal value

of o is

_ Pyx
Qopt = —W

Substituting the optimal value of « in Equation (16), we get the asymptotic optimum mean square
error of the suggested estimator (Yggro) as

_ —2
MSE (Jrsio)ope = Y (ArN — Annpyx) Cy- (17)

4.3. Bias and MSE of Yggr3
Using Equations (4) and (11) in Equation (3) and expanding the proposed estimator Fpgrs up to
second order in terms of e;’s, we have

TILES = 7[1 + €1 + afkes — afkes + aTﬁk (1 — Bk +k+ apk) e
- ozTﬁk‘ (1+k + Bk — afk) €3 + afkeies — afkeres + af?k*(1 — a)eges|. (18)
Taking expectations on both sides of (18) and rewritten as
E (Jpsrs — Y) :7E[a7ﬁk(1—ﬁk+k+aﬁk)e§— O‘Tﬂk(l+k+5k—aﬁk)e§
+ afkeres — afkeres + af?k3(1 — a)eges|. (19)

Now using the results of E (e?), E (e3), E (€3), E (eze3), E (e1e3) and E (ejep) in (19), the bias of

YEsL3 18

B (Fusta) = V0 A 20 — (14 Bk + k — aBb)] . (20)

Squaring both sides of Equation (18) and taking expectations up to second order, we have
E (UgsLs — 7)2 =Y’E [e% + o282k e3 + o’ f%ke3 — 202 %k eses — 20 Bkeres + 208keres] . (21)
Substituting the results of E (e3), E (¢3), E (¢3), E (eze3), E (e1e3) and E (e1e2) in (21), the MSE of
UgrsL3 1S obtained as
MSE (Jgsis) = Y- [AnvCE + Arnalk (aBk + 20y x) C%] - (22)

Differentiating Equation (22) with respect to o and equating the derivative to zero, the optimal value
of o is

_ 9vx
Qopt = —W

Substituting the expressions for « in (22), we get the asymptotic optimum mean square error of the
suggested estimator (Ypg3) as

_ =2
MSE (yESL3)opt =Y ()‘T,N - )\nn/)%/X) 012/~ (23)
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5. Efficiency comparison of the estimator Ygg;,
Versus the estimator 7,.,
_ _ =2
MSE (5,,) = MSE (Jgst.1)ops = Y AnnpyxCf > 0.

Hence the proposed class of estimator is more competent than ¥,..
Versus the estimator Yg s,

_ _ =2
MSE (Jrat) — MSE (Tgsii)opt = ¥ A NPy xCF + Arn (Cx — PYXCY)2] > 0.

Hence the proposed class of estimator is more competent than Ygap.
Versus the estimator Joonmp,

_ _ =2
MSE (yCOMP)opt — MSE (yESLl)opt =Y )‘n,Np%XC}% > 0.

Hence the proposed estimator ggr,; is more competent than the existing estimator ¥ooyp-

opt

6. Efficiency comparison of the estimator Ygg; -
Versus the estimator %,.,
_ _ =2
MSE (5,) — MSE (Jgsi2)op; = Y AnnpyxCf > 0.

Hence the proposed class of estimator is more competent than ¥,..
Versus the estimator Yg s,

_ _ =2
MSE (Yrar) — MSE (yESLZ)opt =Y [()‘mN = Arn) P%/XC%/ + Arn (Cx — PYXCY)Z] > 0.

Hence the proposed estimator Jpgp,o is more competent than the estimator yr o1 under the condition

Nn
of r > 537

Versus the estimator yoonp,

opt

_ _ =2
MSE (yCOMP)opt — MSE (yESL2)opt =Y (AN = Arn) P%/XC%/ > 0.

Hence the estimator Jggyo is better than the estimator Yooyp if r > sy, JJ\\;fn.
Versus the estimator Yggr,,

_ _ —2
MSE (Ugsr.2)opt — MSE (psii)ops = Y Arnpy xCf > 0.

Hence the estimator yggp,; is more efficient than ypgy.

7. Efficiency comparison of the estimator Yggrs

Versus the estimator 7,.,
_ _ =2
MSE (7,) — MSE (JgsLs)ops = ¥ Arnpyx O > 0.

It is found that the estimator is more competent than ¥,..
Versus the estimator Yg s,

_ _ =2
MSE (Jrar) = MSE (JgsLs)ope = ¥ Arn (Cx = pyxCy)® > 0.

Hence the proposed estimator ypg,3 is more competent than the existing estimator Yot
Versus the estimator Jooup,

MSE (Jcomp)opt — MSE (Frsrs)opt = 0-

Hence the estimators yggrs and yoonp are equally efficient.
Versus the estimator Ypgyq,

— — 2 2 2
MSE (Jgsr3)opt — MSE (Ursii)ops = Y An,npy xCy > 0.
Hence the estimator Uggr,; is more efficient than fpgr3-
Versus the estimator Ypgp,

_ _ =2
MSE (yESL3)opt — MSE (yESL2)opt =Y " (AN — Arn) P%/XC%/ > 0.

. _ . . _ . Nn
Hence the estimator Jggy o is more efficient than Jggy g if 7 > 5377

opt
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8. Numerical illustration

To evaluate the performance and efficiency of the proposed estimators, we selected two natural popu-
lation data sets. The details of the data sets are given below

Population A. Source: District Census Handbook, Orissa (1981). We considered population data
of 109 villages/towns/wards in the urban area under police-station Baria, Tahasil-Champua, Orissa,

where

the impact of mortality in India.

X = Average number of non-workers in the village,

Y = Average number of literate persons in the village.

Population B. We considered COVID-19 death data in India. COVID-19 data were retrieved from
WHO websites (download link: https://covid19.who.int/WHO-COVID-19-global-data.csv) (2022). A
total of 943 days’ data (from the period of 01-February-2020 to 31-August-2022) were taken to examine

Table 1. Descriptions of the population data sets.

Parameters Population A Population B
N 109 943
n (10% — 45%) | (16, 27, 31) (330, 280, 308)
r (75% — 95%) (8, 12, 14), (264, 272, 298),
(13, 19, 24), | (230, 246, 268),
(19, 22, 28) (222, 256, 272)
Y 145.3028 559.7815
X 259.083 47113.88
P 0.875 0.7393
Cci 0.4759 2.3910
C% 0.2947 2.6354

Here, we have considered the sample sizes
(n) between 10% and 45% and the response rate
(r) between 75% and 95% with different corre-
lation coefficients.

The percentage relative efficiencies (PREs)
of the proposed estimator and exiting estima-
tors with respect to the mean imputation es-
timator (7,) have been calculated for different
choices of n and r and presented in Tables 2 and

3. The expressions of PRE are given by
MSE (,)

MSE(¢t) ’

where ¢ = Y a1, Yoomps YESL1> YESL2> YESL3-

PRE(t) = 100 x

We have computed PRE of different estimators under population data sets.

Table 2. PRE of the proposed and existing estimators with respect to mean for population data set A.

n r | Mean Ratio Compromised YRS YRSL2 UrSL3
) (Yrar) (Ycomp)

16 | 8 100 133.4421 170.3967 426.6667 | 194.4379 | 170.3967
12 100 115.0050 127.4024 426.6667 | 222.4890 | 127.4024
14 100 107.1363 112.3352 426.6667 | 290.5442 | 112.3352

27 | 13 100 137.6329 182.0664 426.6667 | 245.9588 | 182.0664
19 100 119.9993 137.8821 426.6667 | 196.4182 | 137.8821
24 100 107.0864 112.2447 426.6667 | 291.1513 | 112.2447

31| 19 100 127.8340 155.9912 426.6667 | 131.8468 | 155.9912
22 100 120.3272 138.5975 426.6667 | 194.9844 | 138.5975
28 100 106.4376 111.0747 426.6667 | 299.3295 | 111.0747

Table 3. PRE of the proposed and existing estimators with respect to mean for population data set B.

n r | Mean Ratio Compromised YESL1 YRSL2 YESL3

©,) (Yrat) (Hcomp)

330 | 264 | 100 114.29 117.8987 220.5385 | 165.221 | 117.8987
272 | 100 | 112.5097 115.6074 220.5387 | 169.9412 | 112.5097
298 | 100 | 106.8168 108.3996 220.5387 | 188.3514 | 106.8168

280 | 230 | 100 | 111.8960 114.8218 220.5387 | 171.6678 | 111.8960
246 | 100 | 107.9858 109.8651 220.5385 | 184.0847 | 109.8651
268 | 100 | 102.7698 103.3832 220.5387 | 205.6936 | 102.7698

308 | 222 | 100 | 119.6731 124.9379 220.5387 | 153.1305 | 119.6731
256 | 100 | 111.6468 114.5032 220.5385 | 172.3846 | 114.5033
272 | 100 | 107.9846 109.8636 220.5387 | 184.0888 | 107.9846
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9. Simulation study

In this section, we conduct a simulation study using statistical computational software [9] to establish
the performance of the proposed imputation methods over mean and ratio methods of imputations.
For this manuscript, we have generated data sets using the ‘genCorGen’ function available in the
package ‘simstudy’ [10]. For the study and auxiliary variables, we generated data sets from the Normal
distribution with given parameters and correlation coefficients.

We consider a population size of N = 8500 to generate a dataset of the variables (X,Y) and
calculate the required parameters and correlation coefficient, and we consider only one combination
for simulation for 8 = 2.

For data from the normal distribution:

Data = (X,Y), X ~ (321.0029,0.9986), Y ~ (457.0018,0.9925).

The following steps were used for the simulation of the required population:

Step 1 The ‘genCorGen’ function was used to create a data set with the normal distribution of variables X
and Y of size N = 8500 using the statistical computer program [9] Software.

Step 2 The parameters were calculated.

Step 3 A sample of sizes n = 340, 765, 1020, 1445, 1700, and 1870 (i.e., sample sizes lay between 4% and 22%)
was chosen from this artificial data set with response rates r = (265, 282,296, 313), (597, 635, 666, 704),
(796,847,887,939), (1127,1199, 1257, 1329), (1326, 1411, 1479, 1564), and (1459, 1552, 1627, 1720), re-
spectively (i.e., the response rate lay between 78% and 92% of the total).

Step 4 Sample statistics, i.e. sample mean, sample variance, and the values of the proposed and existing
estimators were calculated for this sample by the imputation techniques.

Step 5 Steps (3) and (4) were repeated 50 000 times.

Step 6 The MSE of every estimator was calculated by the formula of the MSE given by

m

1
i=1

where ¢ = Yrar. Ycomp: UesLi» YesLes YEsL3-
Step 7 The PRE of each estimator was calculated with respect to both mean and ratio estimators.

Table 4. PRE of the proposed and existing estimators w.r.t. mean for simulated population.

n r Mean Ratio Compromised UrSL1 UESL2 UEsL3
@) (Urar) Fcomp)
340 | 265 100 | 113.9510 117.9843 298.4642 | 205.8361 | 117.9844
282 100 | 110.3634 113.1978 296.6979 | 220.1958 | 113.1977
296 100 | 107.6579 109.5184 298.1828 | 235.3574 | 109.5187
313 100 | 104.5903 105.7345 302.5664 | 260.0924 | 105.7344
765 | 597 100 | 114.2429 118.0520 299.3358 | 202.9238 | 118.0520
635 100 111.7084 114.6441 300.7902 | 221.9763 | 114.6441
666 100 108.3124 110.4426 296.4110 | 235.3096 | 110.4426
704 100 | 104.8390 106.1487 296.3235 | 251.2221 | 106.1487
1020 | 794 100 | 114.3723 118.8043 303.0546 | 203.9413 | 118.8043
847 100 111.6880 114.3572 299.4302 | 218.4069 | 114.3572
887 100 | 108.5921 110.5954 303.0168 | 234.8558 | 110.5954
939 100 | 105.5798 106.8347 295.7327 | 251.2449 | 106.8347
1445 | 1127 100 117.3812 122.0280 301.8481 | 200.6764 | 122.0280
1199 100 111.7990 114.9237 297.0182 | 211.8166 | 114.9237
1257 100 108.8625 111.3301 300.3498 | 228.1987 | 111.3301
1329 100 105.1634 106.6227 295.3727 | 248.1224 | 106.6227
1700 | 1326 | 100 | 116.8813 121.6795 299.3749 | 196.6359 | 121.6795
1411 100 111.4307 115.0038 299.1192 | 212.0901 | 115.0038
1479 | 100 | 109.8892 112.4304 293.5836 | 224.4231 | 112.4304
1564 | 100 | 105.7665 107.3481 293.5836 | 224.4231 | 112.4304
1870 | 1459 | 100 | 115.7670 120.4316 294.2983 | 192.2403 | 120.4316
1552 100 113.3495 116.2517 300.6417 | 212.6468 | 116.2517
1627 100 109.7758 112.1398 294.2248 | 224.0924 | 112.1398
1720 | 100 | 105.7008 107.2563 299.8213 | 250.3383 | 107.2563
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Table 5. PRE of the proposed and existing estimators w.r.t. ratio for simulated population.

n r Mean Ratio | Compromised UrSL1 UESL2 UEsSL3
) (Jrar) Heomp)
340 | 265 | 87.7570 100 103.5395 261.9233 | 180.6356 | 103.5396
282 | 90.6097 100 102.5682 268.8372 | 199.5188 | 102.5682
296 | 92.8868 100 101.7284 276.9726 | 218.6161 | 101.7284
313 | 95.6112 100 101.0940 289.2873 | 248.6774 | 101.0939
765 | 597 | 87.5328 100 103.3342 262.0169 | 177.6248 | 103.3342
635 | 89.5188 100 102.6279 269.2637 | 198.7104 | 102.6279
666 | 92.3256 100 101.9668 273.6631 | 217.2509 | 101.9668
704 | 95.3844 100 101.2492 282.6464 | 239.6267 | 101.2492
1020 | 794 | 87.4337 100 103.8751 264.9719 | 178.3135 | 103.8751
847 | 89.5351 100 102.3898 268.0953 | 195.5509 | 102.3898
887 | 92.0878 100 101.8448 279.0414 | 216.2734 | 101.8448
939 | 94.7151 100 101.1886 280.1035 | 237.9669 | 101.1886
1445 | 1127 | 85.1925 100 103.9587 257.1519 | 170.9612 | 103.9587
1199 | 89.4463 100 102.7949 265.6717 | 189.4620 | 102.7949
1257 | 91.8589 100 102.2667 175.8983 | 209.6210 | 102.2667
1329 | 95.0901 100 101.3876 280.8703 | 235.9398 | 101.3876
1700 | 1326 | 85.5569 100 104.1052 256.1359 | 168.2356 | 104.1052
1411 | 89.7419 100 103.2066 268.4353 | 190.3337 | 103.2066
1479 | 91.0008 100 102.3125 267.1632 | 204.2267 | 102.3125
1564 | 94.5479 100 101.4954 277.2213 | 233.6472 | 101.4954
1870 | 1459 | 86.3804 100 104.0293 254.2159 | 166.0578 | 104.0293
1552 | 88.2227 100 102.5604 265.2343 | 187.6028 | 102.5604
1627 | 91.0948 100 102.1535 268.0235 | 204.1364 | 102.1535
1720 | 94.6067 100 101.4716 283.6509 | 236.8367 | 101.4716

10. Conclusion

In this work, we have considered both real and simulated data to conclude:

— Based on three population data sets considered to examine, we observe that the proposed esti-
mators Upgr,; and Yrgro are more efficient than the existing estimators such as mean, ratio, and
compromised; and the third proposed estimator ypg 3 is better than mean and ratio; and equally
efficient as compromised estimator.

— We generated simulated data sets using statistical software R from the normal distribution and
conducted a simulation to examine the efficiencies of the proposed estimators under mean and
ratio methods for different values of sample size and response rate. We observe from Tables 4—
5 that the results of the efficiencies of the proposed estimators have the same trend as that of

Tables 2-3.

When all the sample unit data are accessible, estimators perform better.

In the case of a lack of

availability, due to non-response in single-phase sampling, the imputation technique becomes effective.
Our proposed estimators are limited to handling non-response in single-phase studies only.
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BusueHHs aesakux metofis eKCnoHeHuiaNnbHO-0bepHeHoT

CUHYcOo-norapndgmivHoOI imnyTayii 3a yMOB BIACYTHIX JaHUX

3 BUKOPUCTAHHSAM 3MO4€eJ1bOBAHUX OAaHUX

Ciarx b. K., Jlac Ix.

Mamemamuurui daxysvmem,
ITieniuno- Crionud pe2ionasvHUull ITHCMUMYym Hayku i mexroio2it,
Hipodorcyai, Apynavan-Ilpadew 791109, Indis

BincyrHicTp Biamosizi B onmuTyBaHHI BHHUKAE Uepe3 MOMITHI BiAMIHHOCTI MiXK JIIOAbMH,
dAKi BUDPIIIMIN B3ATUA yIaCTh y IEBHOMY ONUTYBAaHHI, Ta TUMH, XTO IILOI'O HE 3POOUB, IO
MOYKe TIPU3BECTH JI0 HEMMOBHOTH JaHux. MeTos iMmyTaril € ofHiM i3 HafKpaIux crrocobiB
60poTbOU 3 BiACYTHICTIO BimmoBizmeil y BUOIPKOBOMY ONUTYBaHHI [Jisi 3a0e3M€YeHHS OB~
HOTHU JaHuXx. Hafimomupenimumu MeToaMu iMITyTallil € iMIryTallis cepeJIHbOro 3HAYEHHS,
iMIyTaIlisg 3a CIiBBiIHOIIIEHHSIM Ta METOJI KOMIIPOMiCHOI iMmiryTariii. IMmyTariis 3a cepenim
3HAYEHHSIM 3aMiHIOE BCi IIPOIYIIEH] 3HAYEHHS CEPEJIHIM 3HaYEeHHAM BiJIIIOBiJIel, 1110 3MeH-
mye BapiaTuBHiCTb y Habopi manux. MeTosn immyTariil 3a CHiBBiIHOINIEHHIM € JOCATH KO-
PUCHUM It TiATPUMKH IPOMOPIHITHOrO 3B 43Ky MixK 3MminHuMU. Bin nependadae cuabaumii
JIHIAHAR 3B SI30K MiXK JIOCIIKYBAHOIO Ta JOMOMIXKHOIO 3MIHHUMH, IO HE 3aBXKIN BUKO-
HYETHCSI, 1 B pa3i MOPYIIEHHS IILOr0 IPUIYIIEHHA METO I, iMITyTaril Moxke OyTH 3MIIEeHIM.
MeTo 1 KOMIIpOMICHOT iMITy TaIIil, 10 MTOEAHY€E Pi3HI MeToM, Ma€ KiJbKa OOMeXKeHb 1 Bce Iiie
MOKe JIaBaTU 3MIillleH]l pe3yJIbTaTH, SAKIIO OCHOBHI IPUILYIIEHHA OKPEMUX METOJIB IOPY-
mIyI0Thcsa. depe3 0OMeKeHHsT TPAJIUIIITHIX METOIB iMITyTaril Ta /jis iX HOI0/IaHHS OyJ10
3aIPOITIOHOBAHO TPY €KCIIOHEHITIHHO-00€PHEH] CHHYCHO-10raprdMivHI METOIM IMITy TAIlil Ta
BioBinHi TouKOBI oninku. Beejeno 3mimenns (bias) Ta cepeHbOKBAAPATHIHY IIOMUJIKY
(MSE) 3anpononoBaHux OIiHOK i BCTAHOBJIEHO TEOPETUYHI Ta YHCJIOBI Pe3yJIbTaTU IXHBOI
eeKTUBHOCTI MTOPIBHSAHO 3 iCHYIOUNMHU OIiHKaMu. TaKoXK 3reHepoBaHo iMiTarriiini Habopu
JAHUX 3 JIOIIOMOI'OI0 CTATHUCTUYHOIO IIPOrPAMHOIO 3a0€3IeYeHH s I IPOBEJIEHHS CUMY-
JIAiiHOTO Hocaimkenns. KpiM Toro, mjs mociimKeHHst e(peKTUBHOCTI 3aIIPOITOHOBAHUX
OLIIHOK OyJI0 PO3paxoBaHo BifcorkoBy BiguocHy edexrusticts (PRE) 3anpononosanux ta
ICHYIOYHX OITIHOK, BUKOPUCTOBYIOUHN iMiTaIliiiHi HabOpy JAHUX OO0 METOIIB iMITyTaIil 3a
cepejHIM 3HaYeHHsIM Ta 3a CIIBBiIHOIIEHHsIM. AHaJI3 Pe3yJIbTaTiB IOKA3ye, 110 3aIlpPOoIIo-
HOBaHI MeTOM iMITyTallil € 6LIbI epeKTUBHUMA, HiXK iICHYIOU.

Knrouosi cnoBa: npocmuti eunadkosutds 6100ip; iMnymayia; 3miwennsa; cepeidnvboread-
pamuyna noxubka (MSE); sidcomxosa sidnocna edpexmusnicms (PRE); cumyasuitine do-
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