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Flash floods are becoming a critical issue as they occur more frequently in recent years.
Managing watersheds and water resources, researching floods and droughts, and monitor-
ing climate change are all connected to annual precipitation. Therefore, discovering the
most accurate method for calculating annual precipitation is crucial. This study compares
two basic approaches to estimating annual precipitation parameters: parametric and non-
parametric. The research focuses on fitting the distribution of annual precipitation for
fifteen strategically located rain gauge stations scattered around Kuala Lumpur. These
stations play a crucial role in providing comprehensive data for the study. The Generalized
Extreme Value (GEV) distribution is utilized for parametric approaches with Maximum
Likelihood Estimation (MLE) as the parameter estimator. Meanwhile, the kernel function
using the Gaussian distribution is applied for the nonparametric method. Two approaches
are used to compute the smoothing parameter: Silverman’s Rule of Thumb (ROT) and
the Adamowski Criterion (AC). The goodness-of-fit of the proposed models is assessed us-
ing the Mean Relative Deviation (MRD) and Mean Squared Relative Deviation (MSRD)
statistics to evaluate nonparametric and parametric models. The results show that ROT
was the best method compared to AC and MLE in fitting the distribution for the fifteen
rainfall stations in Kuala Lumpur. According to the study, nonparametric approaches can
be an alternative for estimating the annual precipitation in Kuala Lumpur.

Keywords: kernel density estimation; maximum likelihood; generalized extreme value.
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1. Introduction

Precipitation investigation is a basic perspective of hydrological and natural things, especially in places
like Kuala Lumpur, where the tropical climate results in considerable variability in precipitation.
Understanding and anticipating precipitation designs are vital for water asset administration, flood
forecasting, and urban arranging. One of the primary challenges in such studies is choosing the most
appropriate statistical methods to model precipitation. Traditionally, these methods are divided into
two broad categories: parametric and nonparametric estimation techniques.

This paper compares parametric and non-parametric approaches to estimating annual precipitation
for Kuala Lumpur. Parametric strategies expect a particular distribution of the information, allowing
more structured models with defined parameters. On the other hand, nonparametric strategies do not
assume any distribution, making them more adaptable but possibly less efficient when strong assump-
tions about the data hold true. Selecting a suitable statistical model is basic in districts like Kuala
Lumpur, where rainstorms and other climatic variables impact precipitation designs. The profoundly
variable and extraordinary precipitation in such ranges requires vigorous modeling approaches to cap-
ture regular patterns, extremes, and fundamental distributions accurately. Extreme Value Analysis
(EVA), utilizing strategies such as the Gumbel distribution or the Generalized Extreme Value (GEV)
model, is broadly utilized to assess extraordinary precipitation occasions [1,2]. By evaluating both
approaches, we can offer insight into the preferences and limitations of each strategy for hydrological
estimation in tropical climates.
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Precipitation is significant in hydrological processes, affecting water accessibility, agribusiness, ur-
ban waste systems, and flood risks. Precise precipitation gauges can lead to way better flood man-
agement, forward agrarian arranging, and more productive plans of urban seepage frameworks. Kuala
Lumpur encounters substantial annual precipitation, with articulated rainstorm seasons, making it
inclined to flood and waterlogging [3]. Hence, modeling annual precipitation is critical to the city’s
planning efforts. Understanding the distinction between these approaches and their qualities and limi-
tations is fundamental for selecting the most suitable show in Kuala Lumpur’s interesting precipitation
behavior.

Parametric estimation methods are widely used for modeling annual precipitation, particularly in
regions like Kuala Lumpur where monsoon-driven rainfall exhibits distinct patterns and extremes.
These methods assume the data follows a specific probability distribution, such as the Normal, Log-
Normal, Gamma, or Generalized Extreme Value (GEV) distribution, and estimate parameters such
as the mean, variance, or shape using techniques like Maximum Likelihood Estimation (MLE) or
the Method of Moments [1,4]|. For instance, the GEV distribution is as often as possible applied in
hydrology to model extreme precipitation events, providing insights into flood risks during monsoon
seasons. The Log-Normal and Gamma distributions are particularly successful for highly skewed
precipitation data, capturing inconstancy and long-tail characteristics common in yearly precipitation
designs [5]. These parametric approaches are computationally effective and give a theoretical premise
for understanding precipitation patterns, making them essential tools in hydrological modeling and
foundation arranging.

Non-parametric estimation methods differ from parametric approaches in that they do not require
assumptions about the underlying data distribution, making them highly flexible, particularly when the
data distribution is unknown or complex. This flexibility makes non-parametric methods a preferred
choice in scenarios where parametric models may fail or be unsuitable due to the data’s complexity [6].
Kernel Density Estimation (KDE), a widely used non-parametric technique, estimates the probability
density function of a random variable without assuming a specific distribution, instead constructing
a smooth density estimate based on observed data |7]. In the context of precipitation estimation in
Kuala Lumpur, KDE can effectively capture the distribution’s tails, where extreme rainfall events are
represented. Another outstanding non-parametric method is the Empirical Cumulative Distribution
Function (ECDF), which gives a step function that increments at each observed data point, offering a
direct likelihood estimate without depending on distributional assumptions. This approach is especially
valuable for hydrologists who want to include sporadic or non-stationary data, such as Kuala Lumpur’s
precipitation patterns [8].

Despite their preferences, non-parametric strategies have limitations. They typically require larger
sample sizes to achieve the same accuracy as parametric models, especially when estimating tail prob-
abilities or extreme events. Additionally, non-parametric methods may be less efficient when data
follows a known distribution, as they do not leverage the structural advantages provided by parametric
models [9)].

2. Application of parametric and non-parametric methods in Kuala Lumpur

In Kuala Lumpur, both parametric and non-parametric methods have been utilized in hydrological
studies to estimate precipitation and predict flood risks. Parametric approaches, such as using Gen-
eralized Extreme Value (GEV) or Gamma distributions, are often employed to model extreme rainfall
events and assess the likelihood of flooding [10]. These methods are particularly viable when a theoret-
ical framework for understanding precipitation extremes is required. In any case, the tropical climate
of Kuala Lumpur, characterized by rainstorm and convective storms, leads to complex and profoundly
variable precipitation patterns, which in some cases challenge the assumptions of parametric models.
As a result, non-parametric methods, such as Kernel Density Estimation (KDE), have gained popu-
larity. These methods are used to represent precipitation intensity and frequency, particularly when
parametric models fail to capture the full extent of precipitation variability [11]. Non-parametric meth-
ods offer expanded flexibility, enabling them to better handle anomalies and complexities inherent in
tropical precipitation data.
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3. Comparison of parametric and non-parametric methods

The choice between parametric and non-parametric methods for precipitation estimation in Kuala
Lumpur depends on several factors, including the size of the dataset, the need for model flexibil-
ity, and the specific goals of the analysis. Parametric methods are generally more efficient when the
expected distribution closely matches the data, making them appropriate for estimating central ten-
dencies and assessing extremes. In any case, they can be biased if the wrong distribution is chosen.
Non-parametric methods, whereas more adaptable, require larger datasets and may be less efficient
in some contexts. In any case, they are invaluable when the data does not conform standard distri-
butions or when flexibility in modeling is required. In Kuala Lumpur, where precipitation patterns
are characterized by high variability and non-normal distributions, non-parametric methods offer a
more precise representation of the fundamental precipitation distribution. These strategies do not
rely on assumptions about the data’s distribution, making them especially valuable in regions with
complex climatic conditions, such as Kuala Lumpur, where rainstorm and convective storms make
unpredictable precipitation patterns [6]. For example, Kernel Density Estimation (KDE) allows for
the estimation of the probability density function directly from observed data, offering flexibility in
modeling the full range of precipitation variability without assuming a specific distribution [7]. Studies
have shown that non-parametric approaches are better suited for capturing extreme rainfall events and
irregular distributions, which are common in tropical climates like that of Kuala Lumpur [11]. Ad-
ditionally, non-parametric methods such as the Empirical Cumulative Distribution Function (ECDF)
provide a straightforward way to estimate probabilities from data, further enhancing their applicability
in hydrological studies in regions with complex rainfall patterns [8].

4. Materials and methods

This study used the annual precipitation data from rain gauges in Kuala Lumpur. About 25 rain gauge
stations surround Kuala Lumpur; however, only 15 stations were active from 2012 to 2022, as shown
in Table 1, which presents the annual maximum series for Kuala Lumpur. The data was obtained from
the Department of Irrigation and Drainage (DID), Ministry of Environment and Water. The locations
of the rain gauge stations are shown in Figure 1, and all rain gauge stations are distributed across
Kuala Lumpur at different locations.

Table 1. Annual maximum series of 15 rain gauges in Kuala Lumpur.

Station Year 2010 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
S01 - - 147 90 86.5 104 116.5 90 102 109.5 253.5 117
S02 - - 84.5 95 76 65.5 108 105.5 79.5 86 127 94.5
S03 73 94 92 88.5 89 88 106.5 98 92 108.5 199.5  79.5
S04 - - 100.5  82.5 105.5  70.5 104 88.5 86.5 181 223.5 86
S05 - - 125.5 100 105.5  95.5 137.5 65 95.5 152.5 203 71.5
S06 - - 91.5 90.5 85.5 75 95.5 69 127 112.5 194 78.5
S07 - - 155 80.5 116 112 105 108.5  99.5 133.5 237 112
S08 - - 145 103 134 91.5 105 77.5 139 155 262 108.5
S09 - - 113 103 100 103.5 - 120 124.5 151 197.5 105
S10 - - 146.5  84.5 111 108.5 117.5  95.5 143.5 140 251 140.5
S11 - 94 93 101 85 94 94.5 104 84.5 99.5 208 83.5
S12 - - 135 92 76.5 74 78 115 117 156 214.5  84.5
S13 - - 188.5 133 101.5  82.5 102.5 915 87.5 115.5 170.5 113
S14 - - 116.5 100.5 104 97.5 67.5 90 75 103.5 236.5 122
S15 - - 95.5 89.5 89 100 100.5 78.5 104.5 137.5 182.5 81

The choice of the Generalized Extreme Value (GEV) distribution and Kernel Density Estimation
(KDE) for this study is well-justified given the nature of rainfall patterns in Kuala Lumpur. The GEV
distribution is particularly suited for modeling extreme rainfall events, which are critical for flood risk
assessment in monsoon-prone regions like Kuala Lumpur. This distribution allows for the estimation of
the tail behavior of the rainfall data, capturing extreme precipitation events that can have significant
hydrological impacts [4]. It is especially effective when the data exhibits heavy tails, as is typical of
extreme weather events in tropical climates [10]. On the other hand, KDE provides a non-parametric
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Fig. 1. Locations of 15 rain gauges stations in Kuala Lumpur.

approach to estimate the probability density function of precipitation without assuming a specific
distribution. This flexibility is invaluable for capturing the irregularities and variability inherent in
tropical rainfall, especially when the data deviates from common parametric distributions (Silverman,
1986). By combining GEV for extreme event modeling and KDE for a more flexible, assumption-free
estimation, this study can provide a comprehensive understanding of the precipitation distribution and
enhance flood prediction accuracy in Kuala Lumpur.

4.1. Parametric method

There are many methods for estimating parameters, such as maximum likelihood estimation (MLE),
method of moments (MOM) and L-moments. Each parameter estimation technique has its benefits
and drawbacks. However, it may be described in terms of unbiasedness, efficacy, and consistency to
provide an optimum parameter estimate. When the estimated parameter is near the actual parameter,
and the parameter estimation is accurate, it is claimed that it must be unbiased [12]. The approach
that produces the minimum root mean square error (RMSE) demonstrates an effective estimator. This
study considers parametric estimation methods most compatible with GEV distribution. Reference [13]
explains that compared to other parametric approaches, MLE may provide the optimum parameter
value since it increases the chance or combined likelihood of occurrence of the detected sample. In
addition, MLE has ideal properties in estimation, including sufficiency (containing all relevant infor-
mation about the parameter of interest), consistency (asymptotically data generated from the actual
parameter value) and efficiency (achieves the lowest variance of parameter estimates and parameter-
ization invariance [14]). Furthermore, [12] claims that MLE is the most often applied approach to
estimate the GEV parameters as it has good asymptotic properties such as consistency and efficiency.

The Maximum Likelihood Estimator (MLE) has been chosen to estimate the Generalised Extreme
Value (GEV) distribution parameter. Let yq,...,y, denote the annual maximum rainfall distribution;
the probability density function of GEV is

n 1 ~
Hf y27§70- ,U, :H;t £+1€ t(y)7 (1)

=1 1=

[y

where
y—p 3
t(y) — (17(—71;7%)( o )) ¢ ’ g 7£ 07
€ 7 ’ é. = 07
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(& 0, p3y) = In(L(E 0, ply))
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where Z; = 14+¢ (%) The MLE of é, &, i can be achieved by differentiating (£, o, ; y) with respect
to respective parameters and equating the result to zero. This estimation technique is widely used
because of its desirable properties, such as consistency and asymptotic efficiency, when the sample size
is large [15].

Kolmogorov—Smirnov test The Kolmogorov—Smirnov (K-S) test is a non-parametric test used
to determine whether a sample comes from a population that follows a specified distribution. One
key advantage of the K-S test is that the distribution of its test statistic is independent of the under-
lying cumulative distribution function (CDF) being tested, which makes it particularly versatile and
appealing in various applications [5,16]. Another benefit is its precision, as it does not rely on large
sample sizes for the approximations to hold, unlike the chi-square goodness-of-fit test, which requires
sufficiently large sample sizes to ensure validity [16]. The K-S test is based on comparing the observed
cumulative distribution function (ECDF) of the sample with the expected CDF of the hypothesized
distribution. The test can be defined as H,: The data follow a certain distribution and Hi: The data
does not follow a certain distribution, where the test statistics can be calculated by

i—1 i
D_lglii}ziv <F(YZ)_T’N_F(YZ)>’ 3)

where F' is the theoretical cumulative distribution of the distribution being tested which must be a
continuous distribution, Y; are ordered from smallest to largest value and N is the number of samples.

4.2. Non-parametric method

The kernel method. Nonparametric methods, by definition, impose little to no assumptions on the
underlying data distribution. These methods are particularly useful when the form of the distribution
is unknown or complex. The kernel density estimates f () at a point z is given by

f(@:%é}((”j;%), (@

where n is the number of observations, h > 0 is the smoothing parameter, and K (z) is the kernel func-
tion which should satisfy three conditions, namely [6] [* K(x)dy =1, K(z) should be symmetrical
and K(x) > 0.

Then, the kernel estimator of the distribution function by

Fh<x>=/_;fh<x>dtziiﬂ($fi), (5)

where H(u) = [*_ K(z)dt.

The accuracy of the predicted kernel density estimate is influenced by two key factors: the choice
of the kernel function and the selection of the bandwidth. First, the kernel function determines the
shape and smoothness of the estimated density, while the bandwidth controls the degree of smoothing
applied to the data. A smaller bandwidth results in a more sensitive estimate that may overfit the
data (too much sensitivity to noise), while a larger bandwidth results in a smoother estimate that
may underfit the data (overly generalized). The optimal bandwidth is crucial to achieving a balance
between these extremes [6].

For this study, the Gaussian kernel function was selected due to its desirable properties, particularly

its symmetry and smoothness. The Gaussian kernel is widely used because it provides a smooth and
continuous estimate, with no sharp discontinuities, making it well-suited for modeling complex data
distributions, such as those found in rainfall data [7]. Its bell-shaped form ensures that it assigns
higher weights to data points that are closer to the point of interest, which is particularly useful in
capturing local features in the data, such as peaks or clusters in precipitation patterns. Additionally,
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the Gaussian kernel is mathematically tractable and computationally efficient, which adds to its appeal
in practical applications [6]. By combining this kernel with an appropriately selected bandwidth, we
can achieve an accurate and smooth estimate of the underlying precipitation distribution, essential for
reliable rainfall prediction and flood risk assessment. Therefore,
2

L (6)

V2rh
Choosing the smoothing parameter. The fundamental issue in applying KDE is choosing the

smoothing parameter, known as bandwidth selection. The optimal value of h is based on the value
that minimises Integrated Mean Squared Error (IMSE), known as the optimality criterion. IMSE is
given by [6,9]:

K(z) =

IMSE — / T E[f(2) - f(a))%d, (1)

—00
where f(z) is the estimate of f(z) unknown density function.

An excessively smoothed probability density, with suppressed modes and excessively accentuated
tails, is produced by a broad bandwidth. On the other hand, a narrow bandwidth may provide density
estimates with observable peaks in the probability density’s tails. In this study, two selection methods
will be compared between Adamowski criterion (AC) proposed by Adamowski (1989) and Rule of
Thumb (ROT) proposed by Silverman (1987).

Adamowski criterion. Adamowski and Labatiuk (1987) discover that using IMSE criteria, all
different numerical techniques for calculating h4c behave similarly and are all somewhat near to the
optimal value anticipated by theory. The optimal value of hac may be represented as:

hres Yoy Y (@ — ) @®
o)
where x; and x; are order statistics of observations, and n is the number of samples. Then the kernel
estimator with Gaussian kernel function can be calculated from equation below:

Lyn L os(), )
n < hv2m

Rule of thumb. To reduce the value of Asymptotic Mean Integrated Squared Error (AMISE),
Silverman (1987) developed ROT. The optimum combination between asymptotic variance and bias is
provided by

1
R(K) \° _1

= () 1o
where hy, is the optimal bandwidth (also known as the “asymptotic bandwidth”), R(K) is the integral
of the squared kernel function R(K) = ffooo K?(x)dx, muy(K) is the second moment of the kernel
function K (z), i.e., puo(K) = [0 2?K(z)dz, R(f?) is the integral of the squared second derivative of

the true density function f(z), i.e., R(f") = [ (f"(z))? dz and n is the sample size.
Assuming the data follows the normal distribution with Gaussian kernel function such that R(f?) =

%‘1}; and R(K) = ﬁ,

above smoothes non-unimodal distributions excessively, Silverman (1987) suggests that the smoothing
parameter be set at a little lower value in the equation below:

hroT = 0.9 min (A IQR> n-s.

we obtain h = 1.36430 n"5. However, to address his concern that the value h

utl=

=t 11
7134 (11)

The ROT offers a practical and widely used approach for selecting the bandwidth in kernel density
estimation. However, its accuracy may be compromised if the underlying population is not normally
distributed. In such cases, the ROT may not provide the optimal bandwidth, leading to suboptimal
smoothing and inaccurate density estimation.
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4.3. The goodness of fit test

Olofintoye and Adeyemo (2012) claim that the best-fit model was selected using statistical tests (good-
ness of fit test) based on the mathematical expression produced for each parametric and nonparametric
density function. This research employed the Mean Relative Deviation (MRD) and Mean Squared
Relative Deviation (MSRD) statistics to evaluate the fit of constructed models, comparing the non-
parametric and parametric techniques. The following are the definitions of these statistical terms:

MRD = — E — x1 12

1 & Ty €Ty 2
MSRD = — 100 13
n;( . ) (13)

1
where n is the number of samples, z; represents the observed highest annual precipitation values and
Z; represents the calculated highest annual precipitation values, while x; denotes the observed values,
respectively. Lower MRD and MSRD values generally implied a better fit [17]. Hence, MRD and

MSRD values were calculated for each constructed model, and the best-fit model was selected based
on the lowest values of these two metrics.

5. Result and discussion

Various reasons, such as equipment state, site conditions, and maintenance programs, might have
caused data loss in rainfall data records leading to only certain years with minimal data loss being
selected for the period 2012-2022. Maximum annual precipitation data from fifteen rain gauge stations
in Kuala Lumpur were fitted to parametric and nonparametric methods.

Table 2. Parameters estimation by MLE. Table 3. Bandwidth coefficient by Silverman’s
rule of thumb and Adamowski criterion.

Station Location, i Scale, & Shape, £ Station Silverman’s ROT AC
S01 97.1071 13.6146  0.7594 S01 10.1177 13.9933
S02 85.0124 14.9730 —0.1213 S02 9.3761 6.3560
S03 87.6251 12.6766  0.2875 503 4.8011 7.1318
S04 88.3381 18.4943  0.4931 S04 8.0518 14.9492
S05 96.2806 289161  0.0708 505 16.5273 14.1845
S06 83.8706 15.5779  0.4315 S06 11.8658 11.3369
S07 106.5247 22.4012 0.2228 S07 9.8528 13.1615
S08 107.7754 28.1326  0.2395 S08 16.9511 16.3848
S09 106.0476 8.4240 0.9673 S09 9.0888 10.3648
S10 112.6865 25.8847  0.2040 S10 14.2495 14.3656
S11 89.1955 7.2796 0.7123 S11 4.6775 7.5301
S12 84.3629 15.2276 1.0506 512 21.5597 14.9358
S13 99.0371 18.0855  0.4315 S13 14.6733 12.0412
S14 90.8675 21.9722  0.2629 S14 9.1112 13.4500
S15 90.0388 12.8254  0.4782 S15 6.0918 9.7034

For data analysis by parametric methods, the MLE method was used to estimate the parameters of
GEV distribution. Table 2 shows the estimated values of [, &, and f representing the GEV distribu-
tion’s location, scale, and shape parameters. The nonparametric approach using the Gaussian kernel
function fits the annual maximum precipitation data from the locations of 15 rain gauges described
above. Two techniques, namely Silverman’s ROT and AC, will be employed to determine the band-
width coefficient, A, when analysing data using the nonparametric kernel method. The values of h for
ROT and AC are tabulated below in Table 3. This result shows that ROT is deemed a much superior
bandwidth selector compared to AC due to most of the stations’ lower values of MRD and MSRD.
Nevertheless, the lowest value of h will be selected to calculate MRD and MSRD to compare the per-
formance of the parametric and nonparametric methods [17]. The optimal bandwidth calculated by
both methods yielded a smaller value and will be applied to calculate the MRD and MSRD listed in
Table 4.
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From Table 3, most stations with lower values of h (roughly 60%) are ROT values, indicating that
Silverman’s ROT is a more accurate estimator of the smoothing parameter for the Gaussian kernel.
Hence, it is deemed that ROT is a much superior bandwidth selector compared to AC and will be
selected to calculate the value of MRD and MSRD to compare the performance of the parametric and
nonparametric methods [17]. For instance, as shown in Table 4, the MRD and MSRD values for the
nonparametric model are significantly lower than those for the parametric model, suggesting that the
nonparametric method more accurately represents the observed data. This confirms that the nonpara-
metric approach is superior in terms of model fit, as it minimizes the discrepancy between observed
and predicted values more effectively than the parametric approach. Another result of this study is
that KDE with Gaussian kernel function and ROT as bandwidth selector is the best among the para-
metric GEV distributions and KDE with AC as bandwidth selector. Table 4 compares parametric and
nonparametric methods for analysing rainfall data across 15 stations, presenting each method’s Mean
Relative Difference (MRD) and Mean Squared Relative Difference (MSRD). Generally, parametric
methods yield higher MRD and MSRD values than their nonparametric counterparts. For example, at
Station SO01, the parametric MRD is 56.5739 with an MSRD of 10820.4623, while the nonparametric
MRD and MSRD are significantly lower at 23.5609 and 940.6689, respectively.

This suggests that para-

metric methods, which as- Table 4. MRD and MSRD using parametric and nonparametric methods.

Parametric Nonparametric
MRD MSRD h MRD MSRD
S01 56.5739 10820.4623 10.1177 23.5609  940.6689
S02 17.4364  792.3782 6.3560 15.4311 114.2151

sume a fixed statistical distri- Station
bution for rainfall data, may
struggle to capture the real

variability, leading to greater S03  20.6871 707.7760  4.8011 16.4163  440.6520
estimation errors when the ac- S04 36.9443 2943.0673  8.0518 30.0981 1604.3139
tual distribution deviates from S05 34.9697 2482.1666 14.1845 29.5921 1240.6022
the assumed model. Nonpara- S06 31.9003  2361.2267 11.3369 23.9863  748.9548

508 53.1045 3766.3836  16.3848 27.0167 1222.8588
S09 30.5836  666.7029 9.0888  16.8291  187.9080
S10 29.5271  1314.8314  14.2495 22.7583  727.0147

make no such assumptions
and seem to perform better,

particularly in regions where S11  37.3841 2130.5950 4.6775 15.2836  415.0120
rainfall patterns are highly ir- S12 534976 7150.9177 14.9358 30.1477 1386.0859
regular. S13 405051 4234.4934 12.0412 22.7461  500.7414

The nonparametric method S14 58.0500 9670.6768  9.1112  24.2583 1215.2512
also includes a bandwidth pa- S15  20.8210 852.8541  6.0918 19.1042  372.1644

rameter (h), which determines

the degree of smoothing in the data estimation. Higher bandwidth values, like 16.9511 at Station S08,
result in smoother estimations, while lower values, such as 4.6775 at Station S11, provide more detailed
estimations but might overfit the data. Stations like SO8 and S12; with very high MRD and MSRD
values, illustrate that parametric models may be inadequate in capturing extreme rainfall behaviors
in such regions. Meanwhile, nonparametric models consistently show lower MSRD values, indicating
their greater flexibility and suitability for modeling complex and variable rainfall data, such as the
annual precipitation patterns in Kuala Lumpur.

The kernel density plots for stations S01 to S15 illustrate in Figure 2 varying rainfall distribution
patterns across Kuala Lumpur. In these plots, Silverman’s Rule of Thumb (ROT) and the Adap-
tive Coefficient (AC) are used as bandwidth selection. Each method affects the visualization and
interpretation of the data differently.

Silverman’s Rule of Thumb (ROT) is a more traditional approach, using a fixed bandwidth derived
from the data’s standard deviation and the number of data points. This method tends to produce
smoother density curves, which can be beneficial for identifying general trends and avoiding overfitting
where data is sparse. For example, in the plots for stations like S01 and S04, ROT generates smooth
curves, providing a broad overview of rainfall distribution that highlights major trends without catching
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up in minor data fluctuations. This can be particularly useful in environmental applications where

understanding general weather patterns is more relevant
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Fig. 2. Kernel density plot of 15 rain

On the other hand, the Adaptive Coefficient (AC)

than capturing every small anomaly.
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gauges in Kuala Lumpur.

adjusts the bandwidth based on local data

variability, allowing it to reflect more detailed features in the distribution, such as sharper peaks or
multiple modes. This method is evident in its ability to delineate finer details in the rainfall data,
as seen in the plots for stations S05 and S12. These detailed plots can reveal multiple rainfall modes
or shifts in rainfall intensity that ROT might smooth over. For example, station S15’s plot using AC
shows a clear peak around 140 mm, which is less pronounced under ROT, suggesting that AC might be
better suited for detecting specific rainfall events that could be crucial for local planning and response

efforts.

Across the board, these kernel density plots serve as a tool for understanding rainfall behavior at
each station. They help meteorologists, urban planners, and environmental researchers discern patterns
that could influence flood forecasting, water resource management, and urban planning. The specific
needs of the analysis should guide the choice between ROT and AC: ROT for broader trends useful
in long-term planning and policymaking, and AC for operational decisions and event-specific analyses
where understanding the nuances of rainfall distribution is crucial. Overall, these plots are not just

historical data charts but analytical tools that provide
time and space in Kuala Lumpur. They help in making

insights into how rainfall is distributed over
informed decisions about resource allocation,

disaster preparedness, and environmental conservation based on the variability and intensity of rainfall

captured by different statistical methods.
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6. Conclusion

The comparison between parametric and nonparametric approaches in modeling rainfall data across
various stations in Kuala Lumpur highlights significant differences in how each method captures rainfall
distribution patterns. The parametric approach, typically using models like the Generalized Extreme
Value (GEV) distribution, assumes a specific distribution shape, which can limit its ability to capture
the full complexity of the data. In contrast, nonparametric methods, specifically Kernel Density
Estimation (KDE) with bandwidth selection techniques such as Silverman’s Rule of Thumb (ROT)
and the Adaptive Coefficient (AC), provide more flexibility in modeling rainfall data without assuming
a fixed distribution. ROT offers a smoother, more generalized view of the rainfall distribution. By
selecting a fixed bandwidth, it captures the overall trends in the data but may overlook local variations
or secondary features. This method provides a broad overview of the rainfall patterns but may not
adequately highlight finer details, such as subtle fluctuations in the data. AC, with its adaptive
bandwidth approach, is better suited to capturing local density variations. It adjusts the bandwidth
according to the data’s characteristics, revealing more detailed nuances in the rainfall distribution. This
method is particularly effective in stations with higher rainfall variability, as it can identify secondary
peaks or multimodal distributions that ROT might miss.

The findings from these methods show that rainfall patterns in Kuala Lumpur differ significantly
across stations. Some stations, like S01, S03, and S08, exhibit bimodal or multimodal distributions,
indicating irregular rainfall events. These complex distributions suggest the possibility of extreme
rainfall events in specific years, which is critical for managing flood risks and planning water resource
strategies. The variability in rainfall patterns across stations underscores the need for more accurate
modeling and forecasting tools to address the challenges posed by Kuala Lumpur’s diverse rainfall
characteristics. While both ROT and AC methods provide valuable insights, combining both for
different stages of analysis may be more effective. ROT can be used to identify long-term rainfall
trends and provide an overall picture of the precipitation distribution, while AC can be employed
to detect local variations and extreme weather events. This hybrid approach would provide a more
balanced and detailed understanding of rainfall behavior. Multiple peaks in the rainfall distributions
at certain stations highlight the possibility of extreme rainfall events. Further research focusing on
extreme value analysis or Generalized Extreme Value (GEV) modeling could help better understand
and predict these events, which is critical for flood risk management. The observed variability in
rainfall patterns, particularly in stations that show high variability in rainfall distribution, suggests
that localized weather planning is necessary. Local authorities should tailor flood management and
infrastructure development projects based on specific station-level rainfall patterns rather than on
generalized city-wide models. Since the AC method is sensitive to local data densities, improvements
in the spatial and temporal resolution of rainfall data collection would enhance the accuracy of future
rainfall estimations. More frequent rainfall measurements and expanded coverage across additional
stations could lead to better rainfall distribution models, improving flood prevention strategies.

By incorporating these suggestions, a more robust framework for rainfall analysis can be devel-
oped. This framework would help address both long-term trends and immediate weather-related risks,
particularly in the context of Kuala Lumpur’s vulnerability to extreme rainfall events and flooding.
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MopiBHAHHA NapamMeTpPUYHOT Ta HENapaMeTPUYHOI OLIHKW
pivHux onagis y Kyana—Jlymnypi

Lmac I. C. 4.!, Mycracda M. C.2, Cixi H. C.?

L Inemumym mamemamuarnux 00caiosnceny,
Ywisepcumem Ilympa Manatizia, Manatiszia
2 Kagpedpa mamemamury ma cmamucmuxy,
Darysvmem npupooHUNUT HAYK,
Vwisepcumem Ilympa Manatizia, Manatizis

PanroBi moBeHi cTaloTh KPUTHIHOIO MIPOOJIEMOIO, OCKITBKH BOHH TPAIISIOTHCS BCE TACTIIe
B ocTanHi poku. KepyBannst Boo36ipauMy OaceiiHaAMU Ta BOJHUMUI PECYPCAMHU, TOCIILIZKEH-
Hsl TIOBEHEH Ta MOCYX, & TAKOXK MOHITOPUHT 3MiHU KJIIMATy — BCE 1€ [TOB’sI3aHO 3 PIYHUMUA
omasiaMu. ToMy IMONTYK HAWTOYHIIIIOTO METOJLY PO3PAaXyHKY PIYHUX OB € HAI3BUIAITHO
BaXKJIUBUM. Y I[bOMY JOCJII?KEHHI IMOPIBHIOIOTHCS JIBA OCHOBHI MiJIXO/IM JI0 OIIHKU TIapa-
MeTpiB PiYHUX OMaIiB: MapaMeTpuIHuil Ta HenapameTpudHuit. JlocrikeHHs 30cepeke-
HO Ha Mg00pi PO3MOLIY PIYHUX OMAJIB JJIs IT ATHAISTH CTPATEriIHO PO3TAINTOBAHUX
ONAJOMIPHUX CTaHIIN, po3KuAannx 1Mo BchboMy Kyama—JIymmypy. Li crammii Bigirparots
BUpIMAJIbHY POJIb y HaJaHHI KOMIUIEKCHUX JIAHUX IS JOCTiIKeHHs. Posmonin y3zaramb-
HEeHNX eKcTpeMasibHuX 3HavdeHb (GEV) BHKOpHCTOBYETHCS JJIsl TApAMETPUIHAX IIiIXO/IB
3 OIHKOI0 MakcuMaJibHOl npasponogiouocti (MLE) sk oninkoro napamerpis. Y Toil xe
4qac, MYHKIIA s7pa 3 BUKOPUCTAHHAM IayCCOBOI'O PO3IOIITY 3aCTOCOBYETHCS s Hella-
pameTpuaHOTO MeToy. st obumcieHHsT mapamMeTpa 3TUIaKYyBAHHS BUKOPUCTOBYIOTHCS
nBa migxonu: emuipuane npasuio Clibsepmana (ROT) ta xpurepiii Anamoscbkoro (AC).
Crymigb BiAOOBIIHOCTI 3AIIPOIIOHOBAHNX MOIEIEH OIHIOETHCS 38 JOIMTOMOIOI0 CTATUCTUKH
cepesiHBOrO BifHOCHOTO Bixmienust (MRD) Ta cepeHBOKBAIPATUIHOTO BiJIHOCHOTO Bij-
xuienss (MSRD) jyist oniHky HenapaMeTpuYHUX Ta IHapaMeTpUdHuX Mogeseil. Pesynbrar
nokasye, mo ROT 6ys naiikpamum merojom mopiBasguo 3 AC ta MLE mist anpokcumariii
PO3MOIIY Ui IT'ATHAISITH CTaHIii BuMipoBanus omaiaiB y Kyama-Jlymmypi. 3rigao 3
JOCTIPKeHHSIM, HEIapaMETPUYHI MiIX0AU MOXKYTh OYyTU aJbTEPHATHUBOIO MOIIYKY JaHUX
po piuni onagu B Kyama—JIlymmypi.

Knto4voBi cnoBa: ouinka wisbhocmi A0pa; MakCuMasbma npasdonodibnicms; y3a2aib-
HEHE EKCTNPEMANLHE 3HAYEHHA.
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