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The results of a study on the accuracy of models describing the dependence of thermistor
resistance on temperature are presented. The feasibility of using minimax (Chebyshev)
approximation to calculate the model parameters is substantiated. Compared to the least
squares method, the minimax approximation provides the smallest modeling error. A
model in the form of an exponential function of a rational expression is proposed to de-
scribe the thermistor resistance as a function of temperature. The use of this model
is based on considering the physical properties of the semiconductor resistance depen-
dence on temperature. For the studied calibration results, the model recommended by
the Consultative Committee for Thermometry (CCT) under the International Committee
for Weights and Measures (CIPM) provides higher accuracy in describing the thermistor
resistance–temperature dependence compared to the exponential of a rational expression.
However, the accuracy of the model in the form of an exponential function of a rational
expression is only slightly lower and practically comparable. Additionally, the model in
the form of an exponential of a rational expression allows the use of temperature in the
Celsius scale.
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1. Introduction

Negative temperature coefficient (NTC) thermistors are widely used in the development of various tools
for temperature measurement and control [1]. With advances in thermistor manufacturing technology,
the accuracy of temperature measurements using thermistors is approaching the Standard Platinum
Resistance Thermometer (SPRT) [1]. Today, thermistors are utilized for high-precision temperature
measurements [1–3], cryogenic temperature measurements [4–7], and various other applications [8–10].
However, the practical application of thermistors is complicated by the significant nonlinearity of their
thermometric characteristics [11]. Therefore, when developing models of the metrological characteris-
tics of sensors, it is important to adequately account for the nonlinearity of their characteristics, as it
directly affects the accuracy of physical quantity measurements [12].

Many studies have been dedicated to the investigation of optimal models for thermometric char-
acteristics of thermistors [5, 11, 13]. In the design of high-precision temperature measurement devices,
individual calibration dependencies are often used [2]. The study [14] suggests improving the accuracy
of thermistor thermometric characteristic models by using the dependence of resistance on tempera-
ture. The authors of [14] justify their proposal by the high sensitivity of the resistance dependence
on temperature, a viewpoint also supported by the authors of [3]. In practice, the dependence of
resistance on temperature is particularly useful in designing automatic temperature-tracking systems
using electronic temperature control devices.
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According to the physical properties of semiconductors, the dependence of thermistor resistance on
temperature is determined by the concentration of charge carriers [1]:

RT = R∞ exp

(

Ea

2kT

)

, (1)

where T is absolute temperature, RT is electrical resistance at temperature T [Ω], R∞ is electrical
resistance at temperature T = ∞, Eg is bandgap energy of the semiconductor, the energy required for
charge carriers to transition to higher-energy states [eV], k is Boltzmann constant [eV/K].

For practical applications, instead of the dependence described by equation (1), the approximation
given in [1] is proposed:

R(T ) = R(T0) exp

[

β

(

1

T
−

1

T0

)]

, (2)

where T0 is a convenient reference temperature, often 298.15K (25◦C), β is a parameter characterizing
the thermistor material, typically ranging from 2000 to 6000.

Model (2) provides a sufficiently accurate description of the dependence of resistance on temperature
for small temperature ranges [1]. For a more precise description of this dependence over a broader
temperature range, Consultative Committee for Thermometry under the auspices of the International
Committee for Weights and Measures [1] proposes the use of the model
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, (3)

where ai, i = 0, 3 are unknown parameters, and R(T0) is the resistance at temperature T0. The values
of the unknown parameters of model (3) in [1, 15] are recommended to be calculated using the least
squares method.

In this study, the accuracy of describing the dependence of thermistor resistance on temperature
based on high-precision calibration results was investigated not only for model (3) in the form

R(T ) = R(T0) exp
(

a0 +
a1

T
+

a2

T 2
+
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T 3

)

= R(T0) exp
(

∑3
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aiT

−i
)

, (4)

but also for a model in the form of an exponential function of a rational expression

R21(T ) = exp

(

a0 + a1T + a2T
2

b0 + T

)

, (5)

which depends on the unknown parameters a0, a1, a2, and b0. Parameter values of models (4) and (5)
are recommended to be calculated using the minimax approximation method [16, 17]. Compared to
other approximation methods, such as the least squares method, the minimax approximation ensures
the minimum possible error in reproducing the dependence of thermistor resistance on temperature
within the studied range [16, 18].

2. Modeling the dependence of thermistor resistance on temperature using the model
recommended by the International Committee for Weights and Measures

The modeling of the resistance-temperature dependence is illustrated using the calibration results of
a thermistor presented in [2]. The authors of [2] study the properties of a thermistor designed for
high-precision temperature measurement. This study includes calibration data obtained in May 2014
and February 2015 at RS = 1001.65Ω.

Since the ratio of the boundary values of the investigated range of thermistor resistance variation
exceeds ten, relative error will be used to assess the accuracy of models describing the dependence
of thermistor resistance on temperature. The appropriateness of applying models calculated with
consideration of relative error is based on the fact that the fractional value of the absolute error of the
model differs when approximating small and large values. The authors of the works [18,19] recommend
using models that evaluate relative error for modeling quantities whose investigated values vary by more
than a factor of ten.
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The accuracy of models (4) and (5) was investigated using the calibration results presented in [2]
by applying both the least squares method and minimax approximation. The parameter values for
model (4) using the least squares method were calculated through linearization [18], while calculation of
the parameters of model (4) using the minimax approximation was performed by the method described
in [20]. The distinctive feature of this method is that it employs an intermediate minimax polynomial
approximation [21, 22].

Based on the calibration data obtained in May 2014, the model

R14sq(T ) = exp
(

−7.4834302855648 + 4626.55136391078
T

−
83211.004134574

T 2 −
5035940.2360629

T 3

)

(6)

calculated using the least squares method, provides a relative error of 0.0039%, while the model

R14min(T ) = exp
(

−7.490488290408 + 4634.098342431868
T

−
85839.878552453

T 2 −
4736371.2496365

T 3

)

(7)

calculated with minimax approximation, provides a relative error of 0.00253%.
For the data obtained in February 2015, the model

R15sq(T ) = exp
(

−7.5206494574566 + 4660.4472610159
T

−
93500.51007484

T 2 −
3995786.028146

T 3

)

(8)

calculated using the least squares method, provides a relative error of 0.001458%, while the model

R15min(T ) = exp
(

−7.52791742913 + 4667.213385467
T

−
95595.69858867

T 2 −
3780007.10860779

T 3

)

(9)

calculated using the minimax approximation, provides a relative error of 0.001213%.
The error graphs for models (6)–(9) are presented in Figure 1. Error graphs for models (7) and

(9), whose parameter values were calculated using the minimax approximation, are shown with thicker
lines.

a b

Fig. 1. Relative error graphs of: (a) models (6) and (7), (b) models (8) and (9).

Table 1. Calibration results reproduction errors for models (6)–(9).

Calibration Data Model (6) Model (7)
May 2014 δR14sq = 0.0039% δR14min = 0.00253%

Model (8) Model (9)
February 2015 δR15sq = 0.001458% δR15min = 0.001213%

From the graphs presented in
Figure 1, it follows that the error of
models whose parameters were cal-
culated using the minimax approx-
imation is uniformly distributed
across the entire studied tempera-

ture range. This particular feature of the minimax approximation when processing high-precision data
makes it preferable compared to the least squares method [16]. The least squares method minimizes the
sum of the squares of deviations from the observed results. In this case, within the range of the studied
data, there may be isolated points where the error value significantly exceeds its average. Therefore,
to determine the accuracy of models obtained by the least squares method, their uncertainty is calcu-
lated [11,13,21]. Models whose parameters are calculated using the minimax approximation based on
precision data ensure the achievement of the smallest possible reproduction error within the studied
range [16, 18]. The approximation error of calibration results using such a model corresponds to the
measurement accuracy.

A comparison of the thermistor calibration reproduction errors for models (6)–(9) is provided in
Table 1.
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Models (7) and (9), whose parameters were calculated using the minimax approximation, provide
higher accuracy in calculating thermistor resistance than models (6) and (8), whose parameters were
obtained by the least squares method. Thus, using the minimax approximation to calculate the pa-
rameters of models describing the dependence of thermistor resistance on temperature ensures greater
accuracy compared to the least squares method. Furthermore, the error of the model whose parame-
ters were calculated according to the minimax criterion is comparable to the accuracy of reproducing
calibration results [15].

3. Modeling the dependence of thermistor resistance on temperature using
an exponential of a rational expression

The idea of using an exponential function of a rational expression (5) to model the dependence of
thermistor resistance on temperature takes into account the physical properties of the temperature
dependence of semiconductor resistance (1). According to (1), the dependence of semiconductor resis-
tance on temperature is described by an exponential function of a rational expression. Models (2) and
(4) describing the dependence of thermistor resistance on temperature are expressed as exponentials
of polynomials in negative powers of temperature. The proposed model for describing the depen-
dence of thermistor resistance on temperature in the form of an exponential function of a rational
expression (5) is a logical improvement over models (2) and (4), since approximation using a ratio-
nal expression generally provides higher accuracy than a polynomial approximation with the same
number of parameters [16, 17, 24]. Based on these considerations, we deem it appropriate to apply
the exponential of a rational expression (5) for modeling the dependence of thermistor resistance on
temperature.

The parameter values for the model in the form of an exponential of a rational expression (5)
are calculated using the least squares method by linearizing the exponential and the rational expres-
sion [18]. The parameters of model (5) using the minimax approximation are computed using the
method described in [25]. This method involves the use of an intermediate minimax approximation
with a rational expression [24, 26].

Model

R2,1_14sq(T ) = exp
(

0.001474233930189 T 2−9.24844950622 T+5032.88282446
T+50.21452247792

)

(10)

calculated using the least squares method describes the May 2014 calibration data with a relative error
of 0.00413%. Model

R2,1_14min(T ) = exp
(

0.001349146280136 T 2−9.12449091186 T+4999.261163968
T+49.0889266384871

)

(11)

with parameters calculated using minimax approximation describes the same data with a relative error
of 0.002598%.

The choice of the model in the form of an exponential of a rational expression (5) is justified
by the fact that the exponential of this specific rational expression provides the highest accuracy for
the calibration data from May 2014. The results of the study on the accuracy of the dependence of
thermistor resistance on temperature using an exponential of a rational expression with four parameters
are presented in Table 2.

Table 2. Error values for reproducing resistance based
on the thermistor calibration results from May 2014.

Error k = 0, l = 3 k = 1, l = 2 k = 2, l = 1
Least squares method 0.022% 0.00377% 0.00413%
Minimax approximation 0.0125% 0.002947% 0.002598%

In this table, k represents
the degree of the numerator,
and l represents the degree of
the denominator. From the
results presented in the table,
it follows that the model with
the smallest relative error in reproducing the thermistor resistance for the May 2014 calibration data
is the one with a rational expression where the numerator is second-degree, and the denominator is a
first-degree polynomial.
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For the February 2015 calibration data, the model that provides the smallest thermistor resistance
reproduction error is also a four-parameter model RR(T ), where the numerator is of degree k = 2, and
the denominator is of degree l = 1. This model was calculated using the least squares method,

R2,1_15sq(T ) = exp
(

0.0012890622726766 T 2−9.07218980088 T+4986.415085805
T+48.7143121397354

)

(12)

describes calibration data for February 2015 with a relative error of 0.00159%, and model calculated
using the minimax approximation

R2,1_15min(T ) = exp
(

0.001274822267976 T 2−9.0583682873 T+4982.720865367
T+48.5929164310684

)

(13)

describes the same data with a relative error of 0.001426%.
The error graphs for reproducing the calibration results using models (11) and (13) are presented

in Figure 2.

a b

Fig. 2. Relative error graphs of: (a) model (11), (b) model (13).

From the graphs presented in Figure 2, it follows that the errors of models (11) and (13) are
uniformly distributed across the studied temperature range and, in absolute value, do not exceed
0.002598% and 0.001426%, respectively.

A comparison of the errors of models of types (4) and (5), parameters of which were calculated
using the minimax approximation, is presented in Table 3.

Table 3. Errors of models whose parameters were calculated using the minimax approximation.

Model Calibration data
May 2014 February 2015

R(T0) exp
(

∑3

i=0
aiT

−i
)

δR14min = 0.00253% (7) δR15min = 0.001213% (9)

exp
(

a0+a1T+a2T
2

b0+T

)

δR2,1_14min = 0.002598% (11) δR2,1_15min = 0.001426% (13)

In Table 3, the model number is indicated alongside the provided error values. From the errors
presented in this table, it follows that the model of form (4), recommended by the International
Committee for Weights and Measures for the studied calibration results, provides higher accuracy in
determining resistance by thermistor temperature than the exponential of a rational expression (5).

Models R14min(T ) and R2,1_14min(T ), describing the dependence of thermistor resistance on tem-
perature, whose parameters were calculated using the minimax criterion, also provide satisfactory
temporal stability. The maximum discrepancy between the values of models R14min(T ) and R15min(T )
for the investigated thermistor is 0.077Ω, while the maximum discrepancy between the values of models
R2,1_14min(T ) and R2,1_15min(T ) is 0.075Ω. Graphs of the discrepancies between the values of models
R14min(T ) and R2,1_14min(T ) compared to models R15min(T ) and R2,1_15min are shown in Figure 3.

On these graphs, the horizontal axis represents the temperature values, while the vertical axis
shows the error in calculating the resistance value ∆R = R14_min(T ) −R15_min(T ) in Figure 3a and
∆R = R2,1_14min(T )−R2,1_15min(T ) in Figure 3b.
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a
b

Fig. 3. Graphs of model deviations: (a) R14min(T ) vs. R15min(T ), (b) R2,1_14min(T ) vs. R2,1_15min(T ).

4. Modeling the dependence of thermistor resistance on temperature in degrees Celsius

Model (5) can also be used to describe the dependence of thermistor resistance on temperature in the
Celsius scale. For models (11) and (13), the transition from the absolute temperature scale to the
Celsius scale formally involves only recalculating their parameters and does not affect the accuracy of
the models. The dependencies of resistance on temperature in degrees Celsius, constructed based on
the calibration results of the investigated thermistor, are described by the following models:

R2,1_14min(T ) = exp
(

0.0013491158756 t2−8.387439883 t+2607.5655316
t+322.238681134

)

, (14)

R2,1_15min(T ) = exp
(

0.00127545220442 t2−8.3621752135 t+2603.581916226
t+321.747697

)

. (15)

Model (14) reproduces the thermistor resistance based on the calibration results from May 2014 with
a relative error of 0.002698%, while model (15) reproduces the thermistor resistance for the calibration
data from February 2015 with a relative error of 0.001424%

5. Conclusions

Expectations regarding the improvement in accuracy of describing the dependence of thermistor re-
sistance on temperature using the exponential of a rational expression were not confirmed. For the
investigated calibration results, the model proposed by the International Committee for Weights and
Measures provided higher accuracy. It is advisable to calculate the parameters of models describing
the dependence of thermistor resistance on temperature using the minimax criterion. The error of
models obtained by the minimax criterion corresponds to the accuracy of calculating the thermistor
resistance value, and in this case, there is no need to determine uncertainty. Models whose parameters
are calculated using the minimax criterion also provide satisfactory temporal stability in reproducing
the dependence of thermistor resistance on temperature.

To confirm the higher accuracy of describing the dependence of thermistor resistance on temperature
by the model recommended by the International Committee for Weights and Measures, compared to the
exponential of a rational expression, it is advisable to conduct studies using high-precision individual
calibration results of other thermistors.
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Моделювання залежностi опору термiстора вiд температури
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Подано результати дослiдження точностi моделей залежностi опору термiстора вiд
температури. Обґрунтовано доцiльнiсть використання мiнiмаксного (чебишовського)
наближення для обчислення значень параметрiв моделей. Порiвняно з методом най-
менших квадратiв мiнiмаксне наближення забезпечує досягнення найменшої похибки
моделi. Для опису залежностi опору термiстора вiд температури запропоновано мо-
дель у виглядi експоненти вiд рацiонального виразу. Використання цiєї моделi ґрун-
тується на врахуваннi фiзичних властивостях залежностi опору напiвпровiдника вiд
температури. Для дослiджуваних результатiв калiбрування модель, рекомендована
Всесвiтньою метрологiчною органiзацiєю, порiвняно з експонентою вiд рацiонального
виразу забезпечує вищу точнiсть опису залежностi опору термiстора вiд температу-
ри. Точнiсть моделi у виглядi експоненти вiд рацiонального виразу дещо нижча хоча
практично сумiрна. Модель у виглядi експоненти вiд рацiонального виразу допускає
використання температури за шкалою Цельсiя.

Keywords: термiстор; термометрична характеристика; метод найменших квад-

ратiв; чебишовське наближення; експоненцiальна залежнiсть; рацiональний вираз;

часова стабiльнiсть.
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