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Abstract. The contamination of soil with heavy me-
tals as a result of military activity presents a
significant and multifaceted environmental challenge.
Chromium, in particular, is introduced into the envi-
ronment through various military-related processes,
such as the use of ammunition, explosives, fuels, and
other military equipment. Once released, chromium
can persist in the environment, especially in soil,
where it exists primarily in two oxidation states:
trivalent chromium (Cr(IIl)) and hexavalent chromi-
um (Cr(VI)). The latter is particularly toxic and poses
a considerable risk to both environmental and human
health. In this study, we focused on analyzing soil
samples with the highest concentrations of chromium
ions. The main objective was to identify chromium
compounds present in the soil as a direct consequence
of military actions, with the aim of assessing
environmental risks and developing strategies to mi-
tigate their impact. Prolonged contamination-over a
span of several years-can result in ireversible ecol-
ogical damage, affecting local biodiversity and
potentially leading to the disruption of food webs.
Furthermore, the accumulation of chromium in water
sources and food chains increases the risk of adverse
health effects for nearby populations. Therefore,
chromium pollution arising from military operations
has the potential to cause long-term degradation of
ecosystems, highlighting the urgent need for reme-
diation and preventive measures.

Keywords: chromium ions, migration, electron mic-
roscopy, soil.

1. Introduction

Hexavalent chromium (Cr(VI)) is widely ac-
knowledged for its elevated toxicity and carcinogenicity
compared to trivalent chromium (Cr(Ill)). Chromium
contamination is a major environmental concern, as it
contributes to soil degradation by altering its physical
and chemical properties, ultimately leading to a decline
in soil fertility. In aquatic systems, chromium ions
exhibit slow rates of natural attenuation, creating long-
term imbalances in background concentrations. This
persistence facilitates the migration of Cr species into
water bodies through surface runoff and infiltration,
thereby contaminating both surface and groundwater
resources and posing significant risks to drinking water
safety and human health.

Cr(VI) is particularly hazardous due to its high
solubility and bioavailability, which enable its rapid
uptake by living organisms. Exposure to Cr(VI) has
been associated with dermatological conditions, respi-
ratory disorders, internal organ damage, and increased
cancer incidence. In natural environments, chromium
predominantly exists as Cr(Ill) in the form of stable,
poorly soluble minerals. In contrast, Cr(VI) forms highly
soluble chromate and dichromate salts, which are more
mobile and reactive under environmental conditions.
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Elevated levels of Cr(VI) in soil and water
typically originate from anthropogenic sources, parti-
cularly industrial activities. For example, solid wastes
produced by the leather tanning industry are rich in
Cr(IT) oxides, which can become soluble under acidic
conditions (pH < 6). Cr(VI) compounds also dissolve in
both acidic and alkaline media and can be reduced to
Cr(Ill) in the presence of reducing agents, particularly
under acidic environments. Consequently, chromium in
the environment may be present either in dissolved
Cr(VI) form or as sedimented Cr(IIl) oxides. Given its
greater solubility and ecological mobility, Cr(VI) poses
a higher toxicological threat than Cr(III).

Regulatory bodies have established a maxi-
mum permissible concentration of total soluble chro-
mium in drinking water at 0.05 mg/L (Peng et al.,
2023; Chen et al., 2018; Mortazavian et al., 2022; Li
et al., 2020). The primary natural source of chro-
mium, chromite (FeCr20s), can undergo oxidation to
Cr(VI) in the presence of manganese oxides
(Mn(III/IV)), which are common constituents in soils
(Beukes et al., 2017; Hu et al., 2016; Luizon Filho et
al., 2020). Conversely, various environmental com-
ponents such as organic matter, iron-based com-
pounds, and sulfides facilitate the reduction of Cr(VI)
to Cr(Ill), leading to redox transformations that in-
fluence chromium speciation and mobility in conta-
minated soils, sediments, and water bodies (Wise et
al., 2022; Karimi-Maleh et al., 2021).

Mineralogical analyses have identified calcium
chromate (CaCrOs) as a dominant crystalline phase in
Cr(VI)-contaminated environments, while iron has
been observed in complex forms such as FeEOHCrOsa,
as confirmed by X-ray diffraction data (Joint Com-
mittee on Powder Diffraction Standards, JCPDS card
8-0458) (Mishra & Bharagava, 2016).

However, chromium pollution sources have a
significant impact on the environment during hostilities,
as a result of the use of ammunition and explosives, fuel
and lubricants, the accumulation of disrupted equipment
and worn metal parts and debris, etc.

According to the environment, there are such
recommendations for reducing the impact of chromi-
um compounds on the environment: a) the use of re-
mediation methods such as phytoremediation (the use
of plants for soil cleaning), chemical treatment and
bioremediation (the use of microorganisms for degra-
dation of pollutants) can help reduce chromium level
soil; b) constant monitoring of chromium levels in ho-
stilities and regulation of the use of chromium mate-
rials may reduce the risks of contamination; c) the use

of environmental recovery programs, including the
reclamation of damaged land and protection of water
resources, is important to reduce the impact of chro-
mium on the environment.

2. Materials and Methods

The soil samples were analysed using SEM to
determine their morphological characteristics. Some
microphotographs illustrate the shape of the soil par-
ticles (Fig. 1). Soil is a heterogeneous material with a
diverse particle size distribution. The soil particles
were analysed using electron microscopy (EDS),
which indicates the presence of chromium and its
compounds in the soil (Fig. 2).

The EDS analysis is presented in the figures from
different areas of the sample. It was found that the content
of elements in the soil differs significantly due to the
crystal lattice structure of such elements as: Si, Al, O, Fe,
Ca, K, Mg, Na and Cr. It should be noted that the
presence of Ba2+ in the soil is noteworthy (Fallahzadeh et
al., 2018; Kim & Dixon, 2002). Barium is bound to clay
components in soils, forming a chromate mineral phase,
BaCrO4, which can be a source of Cr (VI) (Matern et al.,
2017; Matern and Mansfeldt, 2016). The presence of Ba?*
can be attributed to the erosion of intrusive rocks from the
north of the study area (Kazakis et al., 2018). The iron
content also varies and is based on EDS results; the
untreated soil has the highest Fe content.

3. Results and Discussion

For the ESP and SEM, the analysis of soil
samples in the places of explosion for the presence of
heavy metals selected G7 samples, which contain a con-
centration that significantly exceeds the maximum
permissible concentrations (Petrushka & Petrushka,
2023, Petrushka et al., 2023;), in which the XRF ana-
lysis, respectively, there are exceeding the background
concentrations.

The G7 sample investigated region 1 (Fig. 1)
with a multiplicity from 300 to 5740 times in Area 1-3.

The investigated area is characterised by a
notably high silicon (Si) content. X-ray phase analysis
revealed that the soil matrix contains a variety of metal
oxides exhibiting hexagonal crystal structures. These
oxides are formed from heavy metals such as chromium
(Cr), manganese (Mn), nickel (Ni), zinc (Zn), titanium
(Ti), copper (Cu), strontium (Sr), and zirconium (Zr), as
evidenced by spectral peaks with Octane Elect Plus
intensities in the range of 0.05 to 2.2.
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Fig. 1. Examination of zones at a magnification of 300x
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Fig. 2. Experimental data on selected zones (Areal-3) of G7 soil samples at a magnification of 5740 x
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Fig. 2. (Continuation). Experimental data on selected zones (Areal-3) of G7 soil samples at a magnification of 5740 x

The presence of these elements suggests a
complex geochemical environment with multiple
sources of contamination. Of particular significance is
the identification of calcium chromate (CaCrO.) as
the dominant crystalline phase. This compound was
confirmed by reference to the Joint Committee on
Powder Diffraction Standards (JCPDS card 8-0458)
(Tumolo et al., 2022).

Furthermore, iron ions of varying oxidation
states appear to participate in the formation of a
secondary complex compound, ferric hydroxychro-
mate (FeOHCrO4). The occurrence of this mineral
phase was initially reported by Rock et al. (2001),
based on mineralogical observations in similar conta-
minated contexts. Leaching experiments indicated

Elements

N )
o @&V %&' (\}&v Q:&)

that the pH of the eluates during chromium extraction
ranged between 6.5 and 8.5, suggesting that iron in the
soil occurs predominantly in hydroxide rather than oxide
form. This observation aligns with the solubility pre-
dictions provided by Puigdomenech (2004) and the
ICDD database (ICDD Products, 2025), which indicate
that FeOHCrO. is insoluble in solution and thus
precipitates under environmental conditions. The pre-
sence and distribution of these compounds were
further confirmed by X-ray fluorescence (XRF) ana-
lysis of the collected soil samples (Fig. 3), supporting
the conclusion that heavy metals in the studied area
are immobilised primarily as stable mineral phases
with limited solubility, depending on pH and redox
conditions.

mG 7 5740 Area 3
G 7 5740 Area 2
G 7 5740 Area 1

(\}«k'

Fig. 3. XRF analysis of a sample for the content of heavy metals in the soil under study G7
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When analysing other samples, we obtained  confirmatory results, which are shown in Figs. 4-9.
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Fig. 4. Experimental data on selected zones (Areal-3) of G10 soil samples at a magnification of 5740 x
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Fig. 4. (Continuation). Experimental data on selected zones (Areal-3) of G10 soil samples at a magnification of 5740 x
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Fig. 5. XRF analysis of a sample for the content of heavy metals in the soil under study G10
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J
0.8
0,6 G 11 5740 Area 4
0,4 G 11 5740 Area 3
mG 11 5740 Area 5
0,2 - T

G 11 5740 Area 1

0 mG 11 5740 Area 2

Elements

Fig. 7. XRF analysis of a sample for the content of heavy metals in the soil under study G11

TIK

63
553

0
47
39
g [t

Cr
7l
=L

Motz

L \NI !

qallzr @ weE g b
LECR PN | N R e L

15y Z % 2T af EN NZn I pb Pb P Y I YY In

0‘00’5 0 0 40 60 30 100 0 140 160 180

lsec186  OCnts  0000kel  Det Octane Elect Plus

Examination of zones at a magnification of 300 x

Fig. 8. Experimental data on selected zones (Area 1-4) of G12 soil samples at a magnification of 5740 x
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Fig. 9. XRF analysis of a sample for the content of heavy metals in the soil under study G12

In all the soil samples analyzed after the explosion,
the concentrations of elements and their oxides were
observed to exceed natural background levels. Lead,
although chemically inert, rapidly forms a thin oxide layer
when exposed to air. Its crystal structure is cubic and face-
centered. Nickel compounds are of particular interest due
to the unique properties of the metal. The addition of
nickel to alloys enhances their strength, wear and
corrosion resistance, as well as thermal and electrical
conductivity. Moreover, it improves magnetic and
catalytic performance. Because of its high chemical,
thermal, and mechanical resistance, nickel is extensively
used in metallurgy—accounting for approximately 80 % of
its total application—for the production of stainless steel. It
is also crucial in the aerospace, nuclear, electronics,
energy, chemical, and food industries. The majority of
nickel is used to produce alloy steels and various metal
alloys, including those with iron (Fe), chromium (Cr), and
copper (Cu). Zirconium dioxide (ZrOz), another
compound identified in the samples, can exhibit either a
cubic or tetragonal crystal structure. However, these
phases are unstable at room temperature. The tetragonal
phase exists at high temperatures ranging from 1173 °C to
2370 °C, while the cubic phase is stable between 2370 °C
and the melting point of 2680 °C.

Therefore, the experimental data obtained suggest
that the anthropogenic impact of hostilities on the
environment, which is difficult to predict for future
generations.

4. Conclusions

The presence of chromium ions resulting from
military hostilities constitutes a significant environmental
hazard and poses serious risks to human health. These
ions, released during various military activities, conta-
minate soil and surrounding ecosystems, leading to poten-
tial bioaccumulation and toxic effects. In backscattered

electron (BSE) detector images, light-colored crystallites
less than 0.5 pm in size are observed on soil grain
surfaces. These crystallites correspond to elements with
higher atomic numbers, typically associated with military
materials and ordnance residues. Energy-dispersive X-ray
spectroscopy (EDS) analysis confirms the presence of
heavy metals such as copper (Cu), lead (Pb), titanium
(Ti), zinc (Zn), and nickel (Ni), all of which contribute to
the toxicity and persistence of contamination in the
affected areas. Given the severity of these pollutants, it is
essential to adopt comprehensive and proactive strategies
aimed at reducing environmental pollution and restoring
damaged ecosystems. These strategies should include soil
remediation, continuous environmental monitoring, and
public health assessments. Furthermore, compliance with
international environmental protection standards and
humanitarian laws, such as those outlined in the Geneva
Convention, is critical. These frameworks emphasize the
need to minimize ecological damage during armed con-
flicts and promote the sustainnable recovery of affected
regions. Coordinated efforts between governments, en-
vironmenttal agencies, and the scientific community are
necessary to mitigate the long-term consequences of chro-
mium and other heavy metal contamination caused by
military operations.
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