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Abstract. This paper investigates the capability of a system based on voice embeddings to identify speakers. We use a set of 

audio recordings from five speakers and construct clips of varying durations – 5 to 600 seconds. Pyannote-audio embeddings are 

extracted by a neural network, after which similarity coefficients are computed between embeddings of clips from the same speaker 

(intra-speaker similarity) and from different speakers (inter-speaker dissimilarity). We study how clip duration affects the protection 

zone when separating speakers into “own/other.” The experiments show that there exists a certain clip duration that yields a relatively 

wide protection zone, which raises the probability of accurate voice-based identification. The results may be used in future research 

on biometric verification.. 
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1. Introduction 

Modern voice biometric systems are increasingly 

used in security, authentication, and voice interfaces. 

Their effectiveness heavily depends on the ability to 

distinguish among speakers – even when only short audio 

clips are available. A fundamental element of such 

systems is the voice embedding: a vector representation 

of vocal characteristics that enables similarity and 

dissimilarity computations between voices. 

A large body of research demonstrates the appli-

cability of embeddings (e.g., x-vector, ECAPA-TDNN, 

pyannote-audio) to speaker identification tasks [1][2]. 

This paper reports results on how the width of the 

protection zone (safety margin) depends on the duration 

of speech clips used in identification. We conduct a 

comparative analysis of five speakers using embeddings 

and the following similarity (distance) measures: Bray–

Curtis, Canberra, Chebyshev, Manhattan, Euclidean, 

cosine and correlation distances. The analysis covers both 

intra-speaker similarity and inter-speaker dissimilarity. 

Our goal is to determine the minimum clip length required 

for reliable speaker identification – information that is 

important for designing biometric systems. 

2. Limitations 

Among the key limitations of current speaker 

identification systems is a relatively high rate of falsely 

accepting an impostor as the genuine user (2-10%, 

depending on the embedding method) [3]. In addition, no 

publicly available datasets provide high-quality, long 

recordings where multiple speakers with different timbres 

(bass, tenor, soprano, etc.) read the exact same text – data 

that would be necessary for a fair comparison of 

protection systems that use voice identification. There is 

also no universal criterion for choosing the optimal 

similarity metric. 

3. Objective 

The objective is to study how the duration of audio 

clips affects the width of the protection zone; enlarging 

this zone enables improved characteristics in speaker-

identification systems. 

4. Research methods and parameters 

We created several audio recordings and split each 

into equal-length clips. For every clip we computed an 

embedding using a pyannote-audio neural network. We 

then compared embeddings for clips from the same spea-

ker (intra-speaker similarity) and clips from different 

speakers (inter-speaker dissimilarity). In each case, all 

clip embeddings from one recording were compared to all 

clip embeddings from a second recording (Fig. 1). 

To compute similarity coefficients between two 

embeddings we used several standard metrics [4], 

specifically: 

● cosine distance, 

● Euclid distance, 

● Manhattan distance, 

● Canberra distance, 

● Bray–Curtis distance, 

● Chebyshev distance, 

● correlation distance. 
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From these coefficients we derived the width of the 

protection zone (Fig. 2), which is directly related to 

“own/other” decision accuracy and stability, also we 

examined its dependence on clip duration. 

The width of protection zone 𝛥𝑍 is calculated using 

the formula: 

𝛥𝑍 = 𝐼𝐷_𝑚𝑖𝑛 − 𝐼𝑆_𝑚𝑎𝑥 , 

where 𝐼𝐷_𝑚𝑖𝑛 – is the minimum similarity value over the 

inter-speaker mismatch matrix, 𝐼𝑆_𝑚𝑎𝑥 – is the 

maximum similarity value over the intra-speaker 

mismatch matrix. 

In addition, a comparative analysis of similarity 

coefficients was conducted to determine the optimal 

metric that would provide the widest protection zone. 
 

 

Fig1. Schematic of pairwise comparison of clip embeddings: 𝐹𝑖  – is the 𝑖-th clip, where 𝑖 = 1,2, . . . 𝑛 

 
Fig. 2. Protection zone definition. 

 

4.1. Dataset construction and embeddings 

calculation 

The dataset comprises five audio recordings, each 

rendering the same English text in a different voice (two 

female and three male). The recordings were synthesized 

with Google TTS Chirp-3 [5], due to long recordings of 

identical text by multiple human speakers being 

unavailable. 

Recording parameters: 

– Format: WAV. 

– Sample rate: 24  kHz. 

– Bitrate: 384 kbit/s. 

– Channels: mono. 

– Duration: 60 min. 

Embeddings were obtained using annote-audio [6], 

producing 512-dimensional vectors. Prior analysis 

indicated that this network performs well on long or 

mixed recordings [7]. We evaluated clip durations of 5, 6, 

8, 10, 12, 15, 20, 24, 30, 40, 60, 144, 150, 180, 200, 225, 

240, 300, 360, 400, 450, and 600 seconds. Durations were 

chosen so that each recording divides evenly, e.g., 720 

clips of 5 s, 600 clips of 6 s, etc. 

4.2. Metrics description 

The “cosine distance” metric measures the angle 

between two vectors in a multidimensional space, 

irrespective of their lengths. It is often used in recognition 

tasks where the direction, rather than the vector’s 

magnitude, is crucial. This metric is calculated by the 

following formula: 

𝑑𝑐𝑜𝑠(𝐴, 𝐵) = 1 − 
∑𝑛

𝑖=1 𝑎𝑖⋅𝑏𝑖

√∑𝑛
𝑖=1 𝑎𝑖

2⋅ √∑𝑛
𝑖=1 𝑏𝑖

2
,       (1) 

where 𝐴, 𝐵 – vectors, 𝑎𝑖 , 𝑏𝑖 – coordinates of vectors 𝐴, 𝐵 

accordingly.
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The “Euclidean distance” metric is the standard 

function in an n-dimensional Euclidean space; its value is 

computed as the square root of the sum of squared 

differences between the corresponding coordinates of two 

vectors: 

𝑑𝑒𝑢𝑐𝑙(𝐴, 𝐵) = √∑𝑛
𝑖=1 (𝑎𝑖 − 𝑏𝑖)

2.            (2) 

The “Manhattan distance” metric is defined as 

the sum of the absolute differences between the vectors’ 

coordinates: 

𝑑𝑚𝑎𝑛ℎ(𝐴, 𝐵) = ∑𝑛
𝑖=1 |𝑎𝑖 − 𝑏𝑖|.               (3) 

This metric is sensitive to rotations of the 

coordinate system but invariant to reflections about a 

coordinate axis and to translations [8]. 

The “Canberra distance” metric is a weighted, 

normalized form of the Manhattan distance, computed as: 

𝑑𝑐𝑎𝑛𝑏(𝐴, 𝐵) = ∑𝑛
𝑖=1

|𝑎𝑖−𝑏𝑖|
|𝑎𝑖|+|𝑏𝑖|

.                (4) 

This metric exhibits heightened sensitivity to small 

coordinate values because each term is normalized by the 

sum of the components’ absolute values [9]. 

The “Bray–Curtis distance” metric is symmetric 

and normalized, and is defined by the function: 

𝑑𝑏𝑐(𝐴, 𝐵) =
∑𝑛

𝑖=1 |𝑎𝑖−𝑏𝑖|

∑𝑛
𝑖=1 (𝑎𝑖+𝑏𝑖)

.                    (5) 

The function’s value lies in the interval  [0,1], 

where 0 indicates complete identity and 1 denotes 

complete dissimilarity of the two vectors. 

The “Chebyshev distance” metric is defined as 

the maximum absolute difference between the 

corresponding coordinates of the vectors: 

𝑑𝑐ℎ𝑒𝑏(𝐴, 𝐵) = 𝑚𝑎𝑥(|𝑎𝑖 − 𝑏𝑖|).      (6) 

This metric is most commonly used in tasks where 

the maximum coordinate-wise deviations are of primary 

importance. 

The “correlation distance” metric is defined 

using the Pearson correlation coefficient as: 

𝑑𝑐𝑜𝑟𝑟(𝐴, 𝐵) = 1 −  
∑𝑛

𝑖=1 (𝑎𝑖−𝑎)(𝑏𝑖− 𝑏)

√∑𝑛
𝑖=1 (𝑎𝑖−𝑎)

2
⋅∑𝑛

𝑖=1 (𝑏𝑖−𝑏)
2
, (7) 

whear 𝑎 та 𝑏 – mean value of vector coordinates. 

This metric captures only linear correlation between 

variables and does not account for other types of 

relationships. 

5. Effect of audio duration on speaker 

identification error 

Because some metrics produce values outside of 

[0, 1] range, we normalized all results to this range for a 

fair comparison (including coefficients originally in [0, 1], 

which rarely reach 1 exactly). The normalization 

procedure: 

1. Construct mismatch matrices of similarity 

coefficients. 

2. Find the maximal coefficient value – max. 

3. Compute normalization factor k = 1/max. 

4. Multiply all coefficients by k. 

 

 

                 а            б 

Fig. 3. Canberra-distance mismatch matrices:  

(a) pre-normalization; (b) post-normalization. 
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Fig. 3 illustrates Canberra-distance mismatch 

matrices before (a) and after (b) normalization. 

Fig. 4 shows normalized cosine-distance mismatch 

matrices for clip durations 5 s (a) and 400 s (b). 

On each matrix’s main diagonal we placed the 

maximum intra-speaker similarity values; off-diagonal 

entries show the minimum inter-speaker similarity values. 

At 400 s (Fig. 4b) the protection zone is sufficiently wide, 

yielding a clear boundary between intra-speaker and inter-

speaker results. At 5 s (Fig. 4a) there is practically no 

protection zone – some inter-speaker minima exceed 

intra-speaker maxima. 

Table 1 reports ID_min, IS_max and 𝛥𝑍 for durations 5, 

20, 100, 200, 300, and 400 s across seven metrics. 

Fig. 5 shows the dependence of the maximum 

similarity-coefficient values for intra-speaker similarity 

(the IS_max curve) and the minimum similarity-

coefficient values for inter-speaker dissimilarity (the 

ID_min curve) – obtained using the cosine distance metric 

– on the duration of the audio segments. 

 

 

                 а            б 

Fig. 4. Cosine-distance mismatch matrices: (a) 5 s clips; (b) 400 s clips. 

Table 1. Results for ID_min, IS_max and 𝛥𝑍 at selected clip durations. 

 5 20 100 

Metric ID_min IS_max ΔZ ID_min IS_max ΔZ ID_min IS_max ΔZ 

Cosine 0,59 1 -0,41 0,57 0,54 0,03 0,55 0,16 0,39 

Euclidean 0,77 1 -0,23 0,75 0,73 0,02 0,8 0,42 0,38 

Manhattan 0,76 1 -0,24 0,74 0,72 0,02 0,78 0,42 0,36 

Canberra 0,81 1 -0,19 0,81 0,85 -0,04 0,85 0,62 0,23 

Bray-Curtis 0,68 1 -0,32 0,64 0,64 0 0,69 0,33 0,36 

Chebyshev 0,46 1 -0,54 0,74 0,98 -0,24 0,75 0,5 0,25 

Correlation 0,59 1 -0,41 0,56 0,54 0,02 0,63 0,18 0,45 

 200 300 400 

Metric ID_min IS_max ΔZ ID_min IS_max ΔZ ID_min IS_max ΔZ 

Cosine 0,57 0,09 0,48 0,60 0,06 0,54 0,68 0,04 0,64 

Euclidean 0,81 0,32 0,49 0,68 0,07 0,61 0,83 0,19 0,64 

Manhattan 0,79 0,31 0,48 0,79 0,25 0,54 0,8 0,19 0,61 

Canberra 0,85 0,52 0,33 0,84 0,44 0,40 0,86 0,37 0,49 

Bray-Curtis 0,69 0,24 0,45 0,69 0,19 0,5 0,65 0,13 0,52 

Chebyshev 0,71 0,33 0,38 0,72 0,26 0,46 0,7 0,19 0,51 

Correlation 0,65 0,1 0,55 0,68 0,07 0,61 0,68 0,04 0,64 
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Fig. 5. Dependence of 𝛥𝑍 on clip duration 

 

As seen in Fig. 5, for 5-second clips the protection 

zone is negative (Table 1), indicating low identification 

accuracy. Increasing clip duration produces and enlarges a 

positive protection zone, improving the reliability of 

“own/other” decisions. 

For durations from 5 to 20 seconds, 𝛥𝑍 is negative or 

near zero, indicating an absent or negligible protection zone. 

For durations exceeding 20 seconds, a clear protection zone 

appears (Fig. 5). For example, with cosine distance 𝛥𝑍 =
0,39 at 100 s and 𝛥𝑍 = 0,64 at 400 s (Table 1). 

Comparing metrics (Table 1), at 400 s the widest 

protection zones (>0,61) are achieved by four metrics: 

cosine, correlation, Euclidean, and Manhattan. As duration 

decreases, correlation distance performs best; at 100 s it 

yields 𝛥𝑍 = 0,45, whereas the others do not exceed 0.39.  

5. Conclusion 

As clip duration increases, the protection zone widens 

substantially, yielding higher accuracy and stability for 

“own/other” identification. There exists a duration (around 

400 s) beyond which further increases bring only marginal 

gains. For 5-second clips – commonly used in speaker-ID 

tasks – the protection zone is negative, indicating poor 

accuracy. A distinct protection zone appears for durations 

above 20 s. For relatively long clips, cosine, correlation, 

Euclidean, and Manhattan distances provide the widest 

zones; as duration shortens, correlation distance becomes 

preferable. Future work will apply these findings to filter out 

synthesized voices during speaker identification. 
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