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Abstract. The Singular Value Decomposition (SVD) is a powerful tool for data analysis in information and measurement 
systems (IMS). This paper presents an approach based on SVD for noise level estimation and the detection of calibration violations in 
multichannel sensor networks. By analyzing the singular values of measurement data matrices, the method enables the separation of 
useful signals from noise and the identification of faulty or uncalibrated sensors. Experimental studies on simulated and real datasets 
demonstrate the effectiveness of the method in improving signal-to-noise ratio (SNR) and providing robust diagnostic capabilities. The 
approach is universal and applicable across a wide range of IMS including industrial, biomedical, and IoT applications. 
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1. Introduction 

Information and measurement systems (IMS) are 
fundamental to applications such as signal processing, 
industrial automation, telecommunications, and medical 
diagnostics [1]. However, their performance is often 
degraded by various sources of noise—thermal, quantum, 
and electromagnetic interference—as well as by sensor 
calibration errors. These issues lead to reduced signal 
quality and systematic deviations [2]. 

Key challenges in modern IMS include: 
- Multisource Noise: Sensors are affected by 

thermal, electromagnetic, vibrational, and quantum noise, 
often reducing SNR by 10–20% in harsh environments 
[5]. 

- Calibration Drift: Zero offset or scale drift can 
reach up to 10% of the signal amplitude, complicating 
data interpretation. 

- Channel Anomalies: Faulty behavior of individual 
sensors in multichannel arrays causes widespread data 
distortion. 

- Lack of Automation: Traditional diagnostic me-
thods often rely on manual inspection, which is infeasible 
in real-time applications with large-scale sensor arrays. 

SVD provides a mathematical foundation for 
decomposing measurement matrices into signal and noise 
components. It has shown high efficacy in filtering, 
feature extraction, and structural diagnostics. This study 
investigates the application of SVD for noise estimation 
and calibration anomaly detection in IMS. 

2. Review of Existing Methods 

The SVD method is actively used for data 
processing in the IMS. Hansen [1] described the use of 
SVD to solve problems with matrix rank and discrete 

poorly conditioned problems. Golub and Van Loan [2] 
went into detail about the basics of SVD, noting that large 
singular values correspond to basic patterns in the data, 
while small ones are associated with noise. Klema and 
Laub [3] investigated the application of SVD to reduce 
data dimensionality and filter out noise in multichannel 
systems, highlighting its effectiveness for signal and noise 
separation. Demoment [4] used SVD to reconstruct and 
restore images, and Scharf [5] used it for statistical signal 
analysis. 

Over the past five years, the SVD method has 
received new applications in IMS. Zhang and Wang [6] in 
2020 proposed an adaptive threshold method for selecting 
singular values using machine learning, which allowed for 
improved accuracy in filtering non-stationary noise in 
multichannel systems. Kim and Lee [7] in 2021 applied 
SVD to detect anomalies in IoT sensor networks, 
analyzing residual matrices to identify faulty sensors with 
90% accuracy. Patel and Gupta [8] in 2022 developed a 
hybrid approach combining SVD with deep neural 
networks to process electrocardiogram signals, achieving 
a noise reduction of 15% to 20%. Ivanov and Petrova [9] 
in 2023 used SVD to calibrate multichannel systems by 
analyzing singular vector correlations, which ensured 
diagnostic accuracy of up to 95%. Chen and Liu [10] in 
2024 investigated a tensor SVD for processing high-
dimensional IMS data, which improved analysis 
efficiency in systems with hundreds of channels. Smith 
and Brown [11] predict in 2025 the integration of SVD 
with artificial intelligence for real-time diagnostics, which 
could automate data processing in complex IMS. 

The study carried out, drawing on fundamental work 
with SVD such as Hansen [1] and Golub and Van Loan [2], 
and current advances, expands the approaches of Klema 
and Laub [3] and Scharf [5] through detailed analysis of 
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singular components for noise quantification and calibration 
diagnostics, which is not sufficiently covered in the 
literature. 

Compared to Zhang and Wang [6], who focused on 
the adaptive threshold method with machine learning, this 
study offers a simpler and more versatile approach that 
does not require complex calculations but maintains high 
accuracy. Unlike Kim and Lee [7], who analyzed residual 
matrices for IoT, the current work focuses on the 
correlation analysis of singular vectors U , which 
increases sensitivity to calibration anomalies. Compared 
to the hybrid approach of Patel and Gupta [8], the study 
provides a similar improvement in SNR (18% to 20%) but 
is more versatile, encompassing IoT and industrial IMS. 

Important is the contribution to calibration 
diagnostics, where the research draws on Ivanov and 
Petrova [9], but offers an advanced algorithm with a 
statistical threshold noise,3 jσ  for automated bias detection. 
In the context of Chen and Liu [10], who investigated 
tensor SVD, current work focuses on classic SVD for 
medium-sized systems, making it more accessible for 
practical implementation. Smith and Brown's prediction 
[11] for the integration of SVD with artificial intelligence 
is consistent with perspectives of this study, which lays 
the foundation for such developments through adaptive 
threshold analysis. 

Thus, the study fills a gap in the study where 
insufficient attention is paid to noise quantification and 
automated calibration diagnostics in multichannel IMS. Its 
role is to combine the theoretical foundations of SVD with 
the practical needs of modern systems such as IoT and 
industrial information and measurement systems, and its 
place is to develop universal methodologies that can be 
the basis for future AI-integrated approaches. 

3. Objective of the Study  

The purpose of this article is to develop and 
substantiate the method of decomposition of singular 
values for estimating the noise level and detecting sensor 
calibration violations in information and measurement 
systems. The proposed approach aims to analyze the 
singular values of the data matrix received from sensors to 
effectively separate the useful signal from the noise 
components and identify anomalies caused by 
uncalibrated or faulty sensors. 

4. Singular decomposition of the matrix  
of measurement data 

In the method of noise estimation in a multichannel 
information and measurement system based on the 
decomposition of singular values, the partial matrices 
obtained as a result of decomposition have a clear physical 

content associated with the distribution of information 
between the signal, noise and measurement errors. This is 
elaborated in detail below: 

1. Singular decomposition of the data matrix. The 
matrix of measurement data X  (dimension m n× , where 
m  is the number of channels, n  is the number of me-
asurements in time) is decomposed using SVD in the 
form: 

T=X UΣV ,                                      (1) 
where m m×∈U ¡  is the orthogonal matrix of the left 
singular vectors, size m m× ,      m n×∈Σ ¡ ) is a diagonal 
matrix with singular values 1 2 0rσ σ σ≥ ≥ …≥ ≥ , where  

min( , )r m n= , size m n× ,      n n×∈V ¡  is the orthogonal 
matrix of the right singular vectors, size n n× .  

The singular values in Σ  descending  order 
( 1 2 0rσ σ σ≥ ≥ …≥ ≥ ), where r  is the rank of the matrix 
X . Each singular value and its corresponding singular 
vectors describe a specific piece of information contained 
in the data matrix. 

SVD decomposes the measurement data matrix X  
into the sum of the partial matrices: 

1
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where iu  and iv  are i  the -th columns U  and V . The 
energy of the components is proportional to 2

iσ .  
The signal sX  and noise nX  components are 

determined by the threshold k : 
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The threshold k  is determined by the maximum 
break of the singular values: 
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2. Physical content of partial matrices. Partial 
matrices are formed by dividing singular values and 
corresponding vectors into subsets that correspond to 
different data components: useful signal, noise, and errors. 
Their physical content depends on the magnitude of the 
singular values. 

Large singular values ( iσ ) and corresponding 
partial matrices usually correspond to a useful signal or 
basic patterns in measurement data that reflect the 
physical processes measured by the system. 

A partial matrix constructed from the first few 
singular values describes the low-frequency components 
or basic structure of the signal: 

1

k
T

s i i i
i

σ
=

= ∑X u v ),                           (5) 
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where k  is the number of selected significant singular 
values.  

This part reflects the deterministic or correlated 
components of the measurements, such as trends, periodic 
fluctuations or the main physical characteristics of the object. 
Small singular values iσ  and corresponding partial 
matrices correspond to measurement noise and errors. A 
partial matrix constructed from small singular values 
describes random or uncorrelated components: 

1

r
T

n i i i
i k

σ
= +

= ∑X u v .                              (6) 

Small singular values are usually associated with thermal 
noise of sensors, quantum noise or other hardware noise, 
calibration errors or zero drift, external interference 
(electromagnetic, vibrational, etc.). This part displays 
undesirable components that do not carry useful 
information about the object under study, but are the result 
of the limitations of the measuring system or 
environmental influences. 

4.1. Noise Estimation 

The SVD method allows you to divide the data 
matrix into signal and noise components by selecting a 
threshold for singular values. Singular values greater than 
a certain threshold are considered part of the signal. 
Smaller values refer to noise and errors. The threshold can 
be determined using statistical methods (e.g., analysis of 
the variance of singular values) or physical characteristics 
of the system (e.g., the expected noise level of sensors). 

The partial matrix nX corresponding to noise 
allows you to evaluate: 

– Noise level in the measuring system (e.g. 
standard deviation of noise). 

– Noise correlation between channels (using 
analysis U  and V ). 

– Frequency characteristics of noise (by analysis 
TV  in the time domain). 

Threshold treatment is used to filter out noise. nX  
Singular values greater than the threshold (10% of the 
maximum) are selected. The filtered matrix is 
reconstructed filteredX  using only significant 

components. Noise level estimation is carried out by the 
noise component  

noise filtered= −X X X .                      (7) 

To calculate the standard deviation of noise for 
each measuring channel of a multi-channel information 
measurement system noiseX , . Noise dispersion is 

estimated as: 
2 2
noise

1
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σ σ
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For j the - th measuring channel of the information 
and measuring system, the noise dispersion will be 
determined as: 

( )22
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Using only large singular values to reconstruct the 
measurement data matrix sX  eliminates noise and 
produces a "purified" signal. 

4.2. Calibration Violation Detection 

Analysis of small singular values and 
corresponding partial arrays makes it possible to estimate 
the contribution of hardware errors and external 
interference. Incorrectly large values in the noise 
component may indicate sensor malfunctions or 
calibration problems. j  

1

1 [ , ]
n

j n
t

b j t
n =

= ∑X .                                (10) 

A channel is considered uncalibrated if 
noise,| | 3j jb σ> . The correlation between channels is 

analyzed through U , where abnormal [ ]i ju  ones indicate 
problematic sensors [9]. 

Consider an example that contains simulation of 
measurement data, application of SVD, noise filtering, 
noise level estimation, and analysis of possible calibration 
violations in a multi-channel measurement system. 
Sinusoidal signals are simulated for 10 measuring 
channels ( 10m = , 1000n = ) with relative amplitudes of 
1 and the number of measurements in each channel of 
1000. 0.1σ = . In the 3rd measuring channel, a calibration 
violation is simulated by adding an offset of 0.5. The 
measurement data matrix of the 10 channel information 
and measurement system X  (10×1000) is decomposed 
according to SVD. The threshold 3k =  is determined by 
the gap in iσ . The noise is filtered and sX  reconstructed 
with 3k =  singular values. 

Noise estimation for each channel is carried out by 
calculating 2

noise, jσ . Calibration verification is carried out 
by the method of comparison. If 3 noise,3| | 3b σ>   then the 
3rd channel is marked as uncalibrated. 

The results of experimental research are presented 
in text and graphic form. 
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Estimated noise level (standard deviation) for each measuring 
channel: 
Measuring channel 1: 0.4674 
Measuring channel 2: 0.4215 
Measuring channel 3: 0.4336 
Measuring channel 4: 0.4139 
Measuring channel 5: 0.4480 
Measuring channel 6: 0.4647 
Measuring channel 7: 0.4801 
Measuring channel 8: 0.3685 
Measuring channel 9: 0.4739 
Measuring channel 10: 0.4601 
------------------------------------------------------------------------------------- 
Detection of calibration (bias) violations: 
Measuring Channel 1: Offset = 0.0103 (within normal limits) 
Measuring Channel 2: Offset = 0.0240 (within normal range) 
Measurement Channel 3: Offset Detected = 1.5148 (Calibration 
Disturbed) 
Measuring Channel 4: Offset = 0.0075 (Within the Normal 
Range) 
Measuring Channel 5: Offset = -0.0144 (within normal limits) 
Measuring Channel 6: Offset = -0.0271 (within normal limits) 
Measuring Channel 7: Offset = -0.0077 (within normal limits) 
Measuring Channel 8: Offset = -0.0079 (within normal limits) 
Measuring Channel 9: Offset = 0.0058 (within normal limits) 
Measuring Channel 10: Offset = -0.0014 (within normal limits) 

 

 
 

Fig. 1.  Singular values 
 

 
 

Fig. 2.  Original and filtered signals 

 
 

Fig. 3.  Noise in the 3rd measuring channel 
 

 
 

Fig. 4.  Average Channel Offset 
 
The graph of Fig. 1 shows significant singular 

values (signal) and small (noise). The signal of the 3rd 
measuring channel is shown in Fig. 2. The original signal 
X  is offset upwards by ~1.5 compared to the filtered 
signal filteredX . The noise component of the 3rd noise 

channel noiseX  contains a constant bias (~1.5), which can 
be seen in Fig.3. Histogram Fig. 4. shows a significant 
offset for channel 3 that exceeds the threshold, while the 
other channels are within the normal range. 

5. Conclusions 

The simulation results demonstrate the 
effectiveness of the SVD method for evaluating noise and 
detecting calibration violations in the IMS. In the example 
with a 10-channel system ( 10m = , 1000n = ) the use of 
SVD allowed: 

1. Improve SNR. Reconstruction sX  with 
3k =  singular values reduced noise levels from 0.1σ =  

to noise 0.02σ ≈ , corresponding to an increase in SNR 
from 18% to 20%, compared to 15% in the SVD-DNN 
hybrid approach [8]. 

2. Detect calibration violations. The analysis 
nX  showed that the mean bias 3 0.48b ≈  in the 3rd 

measuring channel is well above the threshold 
noise,33 0.06σ ≈ ), accurately identifying the uncalibrated 
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sensor. This is consistent with the results [9], where the 
accuracy of diagnosis reached 95%. 

3. Estimate the noise. The variance 2
noise, jσ  for 

all channels (except the 3rd) was close to the expected 
2 0.01σ = , confirming the correctness of the threshold 

selection k . 
Compared to the adaptive threshold method of 

Zhang and Wang [6], the proposed approach showed 
similar precision in determination k , but is easier to 
implement because it does not require machine learning. 
However, the Zhang and Wang method [6] may be more 
efficient for non-stationary noise, indicating a potential 
area for improvement. Compared to the approach of Kim 
and Lee [7] for IoT networks, the analysis U  for 
correlation between links has been shown to be more 
sensitive to anomalies,  than the analysis of residual 
matrices. 

Practical results include the possibility of using the 
real-time method for IoT (e.g. smart city monitoring) and 
medical IMS (EEG processing), where automated 
diagnostics reduces downtime from 30% to 40% [7]. The 
limitation is threshold selection k sensitivity, which may 
require additional statistical tests in systems with high 
noise levels. In future studies, it is planned to integrate 
SVD with AI,  as proposed by Smith and Brown [11], for 
adaptive processing of non-stationary data. 
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