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Interpolation in trigonometric Bézier curves refers to constructing a curve that smoothly
passes through a given set of control points. In this paper, data points are interpolated
by the General Hybrid Trigonometric Bézier (GHTB) curve. The curve contains four
free parameters that allow flexibility in curve construction. The determination of control
points on the GHTB curve, based on a certain degree, results in the interpolation of the
curve that passes through the data points. Uniform, centripetal, and chordal parameter-
ization methods are applied to GHTB curves. The three parametrization techniques —
uniform, centripetal, and chordal — of the GHTB curve are discussed. Subsequently, the
demonstration of these parametrization methods is carried out using sets of data points in
both 2-dimensional and 3-dimensional Euclidean space. The curvatures and torsion of the
parametrized curves for various values of free parameters in the GHTB curve are observed.
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1. Introduction

Modifying the control points of a regular Bézier curve to achieve a desired form, while ensuring that
the curve passes specific points or adheres to certain constraints, is known as the interpolation of
geometric Bézier curves using shape parameters. Interpolation may be accomplished through various
methods, with the most common ones being linear interpolation, polynomial interpolation (utilizing
polynomials of varying degrees) [1], and spline interpolation (using piecewise-defined polynomials of
higher degrees) [2]. These techniques aim to find the curve with the least overall error or variation in
the data.

Curve interpolation finds applications in various fields such as computing, statistics, image pro-
cessing, and user interface design. It enables the seamless generation of data approximations for
visualization, modeling, and prediction. The Bernstein–Bézier curve technique was investigated for
data interpolation whereby the curves fulfill the aesthetic substance requirements [3]. Pythagorean
hodograph (PH) curves of degree five were proposed for Hermite interpolation, and the C1 four Her-
mite border was applied for a PH quintic structure interpolating Hermite [4]. The presence of zero, one,
or two distinct solutions for G1 Hermite interpolation using PH cubic segments [5] is contingent upon
the orientation of the end tangent t1 and t2 concerning the endpoint displacement vector ∆p = p1−p0.
A method for G1 interpolation with a single Cornu spiral segment was proposed such that a smoothly
fitting curve can be generated between two locations with tangent directions but not curvatures [6]. A
geometric approach for interpolating a sequence of data points, unit tangential, and curvature vectors
was developed using a uniform cubic B-spline curve [7]. A novel cubic Hermite trigonometric spline in-
terpolation method was designed for curves and surfaces with form parameters [8]. Discrete logarithmic
spirals were used to interpolate G1 curves [9]. A quintic Bézier curve was used for planar G3 Hermite
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interpolation [10]. An improved version of the centripetal parameterization method for B-spline data
interpolation was proposed [11]. On the other hand, a particular road curve was reconstructed by
using Bézier curve fitting on a map with the aid of various parameterization approaches [12]. A new
method for interpolating a cubic B-spline curve was demonstrated by considering the first and second
derivatives at endpoints and only the first derivative at inner points [13].

Bézier curves are used in computer graphics, CAD, and other industries to generate smooth, curved
objects. Control points and Bernstein basis functions can be used to create traditional Bézier curves.
It is possible to build diverse forms utilizing parametric or geometric continuity to satisfy our design
needs after building the necessary Bézier curves and surfaces [1]. Various Bézier curves and surfaces
with shape parameters could be explored, each of which has more properties than the original [14].
Shape design is a time-consuming procedure. A design usually cannot be completed in a single phase
even after applying continuity criteria. To get around this difficult situation, two distinct functions
are defined to create these curves and surfaces in tuples of two and three. The form parameters of
the trigonometric Bézier curve were considered because they are more continuous than the polynomial
Bézier curve [15, 16]. Bibi et al. [17] had already created diverse curve shapes and typeface designs
while also defining the curvature of generalized hybrid trigonometric Bézier (GHT-Bézier) curves by
incorporating parametric and geometric continuity constraints. The presentation includes a demon-
stration of generalized hybrid trigonometric Bernstein (GHT-Bernstein) basis functions and Bézier
curves featuring shape parameters. A new class of generalized trigonometric Bernstein-like bases of
k-th degree (referred to as GT-Bernstein) was also introduced. The newly developed basis function,
which includes two shape parameters, shares similarities with the Bernstein basis functions [18]. In a
clear formulation, a novel recursive formula was devised to generate the polynomial functions of de-
gree m, known as the generalized blended trigonometric Bernstein (GBT-Bernstein) [19]. Using these
basis functions, this paper establishes generalized blended trigonometric Bézier (GBT-Bézier) curves
incorporating two form parameters. The study delves into exploring the geometric characteristics of
these curves and investigates their applications in curve modeling.

Beyond maintaining the shapes of curves and surfaces, the Bernstein basis functions introduced
here also convey several geometric properties not observed in the standard Bernstein basis functions
of the past. These fundamental functions are crucial for defining and analysing the geometric fea-
tures of generalized trigonometric Bézier (GT-Bézier) curves and surfaces, which can be compared
to classical Bézier curves and surfaces. A novel rational quadratic, trigonometric Bézier curve was
introduced by Bashir et al. [20], comparable to the conventional rational quadratic Bézier curve. The
existence of shape parameters grants the designer a sense of intuitive manipulation over the form of the
curve. To address the limitation of traditional Bézier curves in generating complex curves, Usman et
al. [21] developed trigonometric cubic Bézier-like curves with single-shape parameters. Furthermore,
a novel sextic trigonometric-Bernstein basis and Bézier curve, incorporating two shape parameters,
was introduced [22]. A proposed curve can be utilized to generate both open and closed curves with
varying values of form parameters. For instance, five templates for spiral transition curves that utilize
cubic GHT-Bézier equations were presented [23]. A novel technique that generates a seamless tra-
jectory (devoid of impediments) using cubic GHT-Bézier spiral curves was introduced. The shortest
distance, bending energy, and curvature variation energy were minimized to provide a smooth path
without obstacles. To tackle the problem of modeling and creating surfaces, continuity constraints were
introduced between two generalized Bézier-like surfaces (gBS) with distinct shape characteristics [24].

This paper introduces the interpolation of the GHT-Bézier curve. By using the concept of the three
parametrization methods namely uniform, centripetal, and chordal, the cubic hybrid trigonometric
Bézier (CHTB) curve interpolated a given data sets. The motivation of this work is to investigate
parameterization within the context of trigonometric Bézier curves. Unlike the parameterization of in-
tegral Bézier curves, which lacks free parameters for shape adjustment [12], trigonometric Bézier curves
offer greater flexibility in their construction. Therefore, it is important to explore how parameterized
curves can be constructed and utilized in this framework.
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Moreover, the concepts of curvature and torsion are introduced for a space curve. Torsion quantifies
the rotational displacement of a space curve from the plane of curvature as it advances along its
longitudinal axis. Curvature quantifies the degree of sharpness with which a curve forms a bend at a
specific location. The fundamental principles are implemented on the interpolated CHTB space curve
to highlight our methodology. This paper focuses on the effect of interpolation by using the introduced
parametrization methods on the CHTB curve in two-dimensional (2D) and three-dimensional (3D)
Euclidean spaces through simple modeling figures and shape parameters’ effect on the interpolated
curve.

2. Preliminary concepts

This section will introduce basic information about a GHTB curve and its properties. Reference [25]
proposed an important idea to address challenges in constructing symmetric revolutionary curves and
rotation surfaces in engineering. The GHT-Bézier curve is utilized for this purpose. The alteration of
shape parameters enables the modification of the curves and surfaces. Free-form complex curves are
constructed by employing GHT-Bézier curves with constraints of parametric continuity.

Definition 1 (Ref. [25]). For n = 2, the quadratic hybrid trigonometric (QHT) Bernstein basis
functions in terms of variable u ∈ [0, 1] are defined as follows:

q0,2(u) =
(

1− sin πu
2

) [(

1− ν sin πu
2

)

eγu + λ
(

1− cos πu
2

)]

, (1)

q2,2(u) =
(

1− cos πu
2

)

[

(

1− β cos πu
2

)

eγ(1−u) − λ
(

1− sin πu
2

)

]

, (2)

q1,2(u) = 1− q0,2(u)− q2,2(u), (3)

and are known as GHT-Bernstein basis functions. The function qi,n(u) = 0 if and only if i = −1 or
i > n. The variables ν, β, γ ∈ [−1, 1] and λ ∈ [−1.5, 0.5] are the shape parameters defined in the given
domain. These functions satisfy some properties such as non-negativity, partition of unity, symmetry,
and terminals property of the curve.

Definition 2 (Ref. [20]). A class of parametric GHT-Bézier curves with a given set of control points
Pi (i = 0, 1, 2, 3, . . . , n) and shape parameters ν, β, and γ are defined by the following equation:

S(u, β, ν, γ, λ) =
n
∑

i=0

Piqi,n(n), 0 6 u 6 1, (4)

where qi,n(n) are the GHT-Bernstein basis functions and variables β, ν, γ, and λ are the shape para-
meters.

By assuming that every curve can be drawn using the Cartesian coordinate system in E
3, the

control points are viewed as a pair of tuples [1],

v(t) = (vx, vy, vz), u(t) = (ux, uy, uz), (5)

and the Euclidean norm of a vector a can be defined as

‖v‖ =
√

v2x + v2y + v2z , ‖u‖ =
√

u2x + u2y + u2z. (6)

The inner and cross products of the two curves are

〈v(t), u(t)〉 =
√

vx · ux + vy · uy + vz · uz, (7)

v(t)× u(t) = (vyuz − uyvz)e1 − (vxuz − uxvz)e2 + (vxuy − uxvy)e3. (8)

The curvature and torsion of the parametric curve u(t) = (ux, uy, uz) are given by

κ(t) =
‖u′(t)× u′′(t)‖

‖u′(t)‖3
, (9)

τ(t) =
Det[u′(t), u′′(t), u′′′(t)]

‖u′(t)× u′′(t)‖2
. (10)

The functions u′(t), u′′(t), and u′′′(t) represent the first, the second, and the third derivative of u(t)
sequentially.
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3. Methodology

3.1. Parametrization methods

Researchers employed various parametrization techniques. Given the absence of discussion on the
parametrization approach in relation to the trigonometric Bézier curve, this work specifically examines
three distinct types of parameterizations: uniform, chordal, and centripetal.

Uniform parametrization. Calculating the parameter values is the simplest method available.
This method is recommended if the target datasets are evenly distributed. According to the assumption
that the parameters are normalized, this range is divided into n pieces linearly if there are n+ 1 data
points. t0 is zero, while tn is one. Other variables are calculated as follows:

ti =
i

n
, 1 6 i 6 n− 1. (11)

The computation of uniform parameterization is fundamentally straightforward. However, employ-
ing this approach may lead to unintended consequences. Where the data distribution is uneven, such
as in a non-uniform distribution of parameters, the parameterization technique may lead to wobbles.
Several alternative approaches had been developed to address this problem, and a comprehensive plan
had been formulated.

Chordal parametrization method. This method was used by Saffie and Ramli [12] for the
Bézier curve. Assume data points are (Q0, Q1, Q2, . . . , Qn). The power factor is α = 1. The distance
between two adjacent data points is defined as |Qi−Qi−1|. In this case, the length of the data polygon
is

L =

k
∑

i=1

|Qi −Qi−1|. (12)

The initial and final parameters are specified as t0 = 0 and tn = 1. The middle parameters are
distributed in the range of (0, 1) according to the following equation:

tk =
1

L

k
∑

i=1

|Qi −Qi−1|. (13)

Centripetal parametrization method. This method was also used by Saffie and Ramli [12].
Using the same data points (Q0, Q1, Q2, . . . , Qn) and the power factor is taken as α = 0.5, the distance
between two adjacent data points is defined by |Qi − Qi−1|

α. In this case, the length of the data
polygon is

L =
k

∑

i=1

|Qi −Qi−1|
α. (14)

Similarly, the initial and final parameters are specified as t0 = 0 and tn = 1. The middle parameters
are distributed in the range of (0, 1) according to the following equation:

tk =
1

L

k
∑

i=1

|Qi −Qi−1|
α. (15)

3.2. Interpolating of general hybrid trigonometric Bézier curve

In this section, the interpolation methods of the GHT-Bézier curve at different values of shapes of
control points will be investigated. When the data points are interpolated, it is assumed that the data is
not noisy (i.e., it does not contain errors). Usually, the user will define its control points to construct the
GHT-Bézier curve. In this paper, the data points are given instead of control points, and the generated
GHT-Bézier curves must pass through a set of control points, bm ∈ R

d (m = 0, 1, . . . , k; d = 2, 3) that
needs to be determined. The GHT-Bernstein basis functions Im,k(t) and shape parameters ν, γ, β, λ
form the following equations:

I0,2(t) =
(

1− sin πt
2

) (

1− ν sin πt
2

)

eγu + λ
(

1− cos πt
2

)

, (13)

Mathematical Modeling and Computing, Vol. 12, No. 3, pp. 936–949 (2025)



940 Mohamed D., Ramli A. L. A.

I1,2(t) = 1− I0,2(t)− I2,2(t), (16)

I2,2(t) =
(

1− cos πt
2

) (

1− β cos πt
2

)

eγ(1−t) − λ
(

1− sin πt
2

)

, (17)

Im,k(t) = (1− t)Im,k−1(t) + t Im−1,k−1(t). (18)

The parametric GHT-Bézier curves with the given set of control points bm is given by

H(t; γ, β, λ, ν) =
k

∑

m=0

(1− t) Im,k−1(t) bm +
k

∑

m=0

t Im−1,k−1(t) bm, 0 6 t 6 1. (19)

Consider a set of points Qj = (xj , yj), such that 0 6 j 6 n, obtained as structured data points.
Assuming that no two consecutive points Qj are the same, consider the problem of interpolating a
trigonometric Bézier curve through these data points such that

H(tj , γ, β, λ, ν) = Qj = (xj , yj), where t0 6 t1 6 . . . 6 tn. (20)

Certain chosen parameter values called interpolating nodes can expand Eq. (15) as follows:

H(t0, γ, β, λ, ν) = Q0;
k

∑

m=0

(1− t0) Im,k−1(t0) bm +
k

∑

m=0

t0 Im−1,k−1(t0) bm = Q0, (21)

H(t1, γ, β, λ, ν) = Q1;
k

∑

m=0

(1− t1) Im,k−1(t1) bm +
k

∑

m=0

t1 Im−1,k−1(t1) bm = Q1, (22)

H(t2, γ, β, λ, ν) = Q2;

k
∑

m=0

(1− t2) Im,k−1(t2) bm +

k
∑

m=0

t2 Im−1,k−1(t2) bm = Q2, (23)

... (24)

H(tn, γ, β, λ, ν) = Qn;

k
∑

m=0

(1− tn) Im,k−1(tn) bm +

k
∑

m=0

tn Im−1,k−1(tn) bm = Qn. (25)

The end interpolating points at t0 = 0 and tn = 1 are as follows:

I0,k−1(0) b0 +
k

∑

m=1

Im−1,k−1(0) bm = Q0, (26)

Ik−1,k−1(1) bk +
k

∑

m=0

Im−1,k−1(1) bm = Qn. (27)

Substituting Eq. (17) into Eq. (16) yields

k
∑

m=0

(1− t1) Im,k−1(t1) bm +
k

∑

m=0

t1 Im−1,k−1(t1) bm = Q1, (28)

k−1
∑

m=1

((1− t1) Im,k−1(t1) + t1 Im−1,k−1(t1)) bm = Q1 − [(1− t1) I0,k−1(t1) + t1 I0−1,k−1(t1)] b0

− [(1− t1) Ik,k−1(t1) + t1 Ik−1,k−1(t1)] bk. (29)

Similarly, at the second data point, expanding the other formula at m = 0 and m = k gives

k
∑

m=0

(1− t2) Im,k−1(t2) bm +

k
∑

m=0

t2 Im−1,k−1(t2) bm = Q2, (30)

k−1
∑

m=1

((1− t2) Im,k−1(t2) + t2 Im−1,k−1(t2)) bm = Q2 − [(1− t2) I0,k−1(t2) + t2I0−1,k−1(t2)] b0

− [(1− t2) Ik,k−1(t2) + t2 Ik−1,k−1(t2)] bk. (31)
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Formulation for the generalized n can be obtained by expanding the next formula at m = 0 and
m = k, resulting in

k
∑

m=0

(1− tn−1) Im,k−1(tn−1) bm +

k
∑

m=0

tn−1 Im−1,k−1(tn−1) bm = Qn−1,

k−1
∑

m=1

((1− tn−1) Im,k−1(tn−1) + tn−1 Im−1,k−1(tn−1)) bm = Qn−1

− [(1− tn−1) I0,k−1(tn−1) + tn−1 I0−1,k−1(tn−1)] b0

− [(1− tn−1) Ik,k−1(tn−1) + tn−1 Ik−1,k−1(tn−1)] bk. (32)

In order to solve the system of equations for the control points b1, b2, . . . , bk−1, the system above
can be converted into the matrix form A ·B = M , where

A =











a1,1 a1,2 . . . a1,k−1

a2,1 a2,2 . . . a2,k−1
...

...
. . .

...
an,1 an,2 . . . an,k−1











,

a1,1 = (1− t1)I1,k−1(t1) + t1I0,k−1(t1),

a1,2 = (1− t1)I2,k−1(t1) + t1I1,k−1(t1),

...

a1,k−1 = (1− t1)Ik−1,k−1(t1) + t1Ik−2,k−1(t1), (33)

a2,1 = (1− t2)I1,k−1(t2) + t2I0,k−1(t2),

a2,2 = (1− t2)I2,k−1(t2) + t2I1,k−1(t2),

...

a2,k−1 = (1− t2)Ik−1,k−1(t2) + t2Ik−2,k−1(t2), (34)

an,1 = (1− tn)I1,k−1(tn) + tnI0,k−1(tn),

an,2 = (1− tn)I2,k−1(tn) + t2I1,k−1(tn),

...

an,k−1 = (1− tn)Ik−1,k−1(tn) + t2Ik−2,k−1(tn), (35)

A =











a1,1 a1,2 . . . a1,k−1

a2,1 a2,2 . . . a2,k−1
...

...
. . .

...
an,1 an,2 . . . an,k−1











,

B =











b1
b2
...

bk−1











,

and the matrix M can be defined as














Q1 − [(1− t1)I0,k−1(t1) + t1I0−1,k−1(t1)]− [(1− t1)Ik,k−1(t1) + t1Ik−1,k−1(t1)]
Q2 − [(1− t2)I0,k−1(t2) + t2I0−1,k−1(t2)]− [(1− t2)Ik,k−1(t2) + t2Ik−1,k−1(t2)]

...
Qn−1 − [(1− tn−1)I0,k−1(tn−1) + tn−1I0−1,k−1(tn−1)]

− [(1− tn−1)Ik,k−1(tn−1) + tn−1Ik−1,k−1(tn−1)]















.
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The matrix B can be obtained by










b1
b2
...

bk−1











= A−1 ·M.

4. Results

4.1. Parametrization of cubic-general hybrid trigonometric Bézier curve in E
2

The uniform parametrization can then be implemented for Eq. (1). This method is recommended if
the target datasets are evenly distributed. Consider CHTB curve with control points b0, b1, b2, b3, and
shape parameters ν, β, γ, and λ = 0. For demonstration purposes, the data points are chosen as the
following:

Q0 = (0, π/2), Q1 = (π, 3π/2), Q2 = (2π, 5π/3), Q3 = (10, 3). (28)

15

10

5

-5

-5 5 10 15 20

Fig. 1. Uniform, chordal, and centripetal parametri-
zation of CHTB curves at shape parameters β = 1,

ν = −1, γ = 1, and λ = 0.

Fig. 2. Uniform parametrization of CHTB curves at
shape parameters β = (−1, 1), ν = (−1,−0.5, 0, 1),

γ = 1, and λ = 0.

Figure 1 shows the comparison of uniform, chordal, and centripetal parametrization of CHTB curves
at shape parameters β = 1, ν = −1, γ = 1, and λ = 0. For design purposes, a specific curve cannot
be pointed to as better than the others. It is only noted that the chordal parametrization is less
curvy compared to centripetal and uniform parameterization. The control points of these curves vary
depending on the parametrization.

Figure 2 shows the uniform parametrized CHTB curves with different values of shape parameters
on the same data points. Both figures use the shape parameters γ = 1 and λ = 0. As the other
shape parameters β and ν are changed, the curve will also change its shape while maintaining the
interpolation on the data points. The control points of the curve are also different as shape parameters
vary.

Figure 3 shows the curvatures of uniform parametrized CHTB curves. The values of curvature
shown are absolute values. The curvatures for purple and cyan curves with the shape parameters
β = 0, ν = 0 and 1 respectively, γ = 1, and λ = 0 are twisted smoothly.

Figure 4 shows the chordal parametrization of CHTB curves and the effect of different shape pa-
rameters using the same shape parameters and data points in Figure 2. In chordal parametrization, the
smoothness of the parametrized CHTB curves between the Q1 and Q2 movements are more apparent
than uniform parameterization.

Figure 5 displays the curvatures of the curves presented in Figure 4. The curvature values are lower
than the uniform counterpart, indicating that the curve is relatively less curvy.
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Hybrid trigonometric Bézier interpolation with uniform, chordal and centripetal . . . 943

15

10

5

-5

5 10

Fig. 3. Curvatures of uniform parametrization of
CHTB curves at shape parameters β = (−1, 1), ν =

(−1,−0.5, 0, 1), γ = 1, and λ = 0.

Fig. 4. Chordal parametrization of CHTB curves at
shape parameters β = (−1, 1), ν = (−1,−0.5, 0, 1),

γ = 1, and λ = 0.

15

10

5

-5

-5 5 10 15

Fig. 5. Curvatures of chordal parametrized CHTB
curves at shape parameters β = (−1, 1), ν =

(−1,−0.5, 0, 1), γ = 1, and λ = 0.

Fig. 6. Centripetal parametrization of CHTB curves
at shape parameters β = (−1, 1), ν = (−1,−0.5, 0, 1),

γ = 1 and λ = 0.

The centripetal parametrization of CHTB curves and their curvatures at β = (−1, 1), ν =
{−1,−0.5, 0, 1}, γ = 1, and λ = 0 are displayed in Figures 6 and 7, respectively. Visually, the
centripetal parametrization resembles the chordal parameterization.

Fig. 7. Curvatures of centripetal parametrized CHTB curves at shape
parameters β = (−1, 1), ν = (−1,−0.5, 0, 1), γ = 1, and λ = 0.
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4.2. Parametrization of cubic-general hybrid trigonometric Bézier curve in E
3

In this section, the CHTB curve interpolation in 3D space is demonstrated. The following data points
are considered:

Q0 =
(

0,
π

2
, 1
)

,

Q1 =

(

π,
3π

2
,
π

2

)

,

Q2 =

(

2π,
5π

3
,
3π

2

)

,

Q3 = (10, 3, 1).

Figures 8 and 9 illustrate the movements of uniform parametrized CHTB curves. Figure 8 depicts
the red curve with shape parameters β = −1, ν = 1, γ = 1, and λ = 0, while the grey curve is
generated using parameters β = −1 and ν = 0. The shape of the curve is adjustable and varies based
on its parameters.

The properties of the curve can be assessed by analysing its curvature and torsion. Figure 9
demonstrates the curvature of the red and grey curves. The grey curve exhibits a higher curvature as
it bends more compared to the red curve. Figure 10 illustrates the torsion of both curves. The red
curve has a slightly higher torsion, indicating that it twists more than the grey curve.

Fig. 8. Uniform parametrization of CHTB curves at
shape parameters β = −1, ν = (1, 0.5), γ = 1, and

λ = 0.

Fig. 9. Curvatures of uniform parametrization of
CHTB curves at shape parameters β = −1, ν =

(1, 0.5), γ = 1, and λ = 0.

Fig. 10. Torsions of uniform parametrization of
CHTB curves at shape parameters β = −1, ν =

(1, 0.5), γ = 1, and λ = 0.

Fig. 11. Chordal parametrization of CHTB curves at
shape parameters β = −1, ν = (1, 0.5), γ = 1, and

λ = 0.
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Using similar data points and shape parameters, Figures 11, 12, and 13 present the chordal
parametrization CHTB curves, corresponding curvatures, and corresponding torsions, respectively.
Figures 14, 15, and 16 display the centripetal parametrization counterparts.

By comparing the grey curve in Figures 11 and 14, the grey centripetal curve is observed to be
slightly different from the chordal one. Furthermore, the curvature of the centripetal grey curve
exhibits a high peak, indicating that it is highly twisty. The torsion of the centripetal grey curve is
observed to be more twisted than the

Fig. 12. Curvatures of chordal parametrization of
CHTB curves at shape parameters β = (−1, 0), ν =

(1, 0.5), γ = 1, and λ = 0.

Fig. 13. Torsions of chordal parametrization of
CHTB curves at shape parameters β = −1, ν =

(1, 0.5), γ = 1, and λ = 0.

Fig. 14. Centripetal parametrization of CHTB
curves at shape parameters β = (1, 0), ν = 1, γ = 1,

and λ = 0.

Fig. 15. Curvatures of centripetal parametrization of
CHTB curves at shape parameters β = (1, 0), ν = 1,

γ = 1, and λ = 0.

Fig. 16. Torsions of centripetal parametrization of CHTB curves
at shape parameters β = (1, 0), ν = 1, γ = 1, and λ = 0.
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4.3. Curve generation with user-defined points

In this section, it is demonstrated how a curve can be drawn by defining points instead of control points.
The flower drawings in Figure 17a illustrate the behavior of interpolated curves in 3D. Rose-shaped
curves with four petals were generated at different shape parameters. The data points are defined in
3D as follows:

For the first petal: q0 = (0, 0, 0), q1 = (2, 2, 1), q2 = (0, 3, 1), q3 = (0, 0, 0).
For the second petal: q4 = (0, 0, 0), q5 = (−2, 2, 1), q6 = (−3, 0, 1), q7 = (0, 0, 0).
For the third petal: q8 = (0, 0, 0), q9 = (−2,−2, 1), q10 = (0,−3, 1), q11 = (0, 0, 0).
For the fourth petal: q12 = (0, 0, 0), q13 = (2,−2, 1), q14 = (3, 0, 1), q15 = (0, 0, 0).
Figure 17a shows the interpolated CHTB curve at β = −1, ν = 1, γ = 1, and λ = 0. The red

curves use uniform parametrization; the blue curves use centripetal parametrization, and the purple
curves use chordal parametrization.

Figure 17b depicts the interpolated CHTB curve at β = −1, ν = 0.5, γ = 1, and λ = 0, using the
same data point.

a b c

Fig. 17. Rose shape at shape parameters (a) β = −1, ν = 1, γ = 1, and λ = 0, (b) β = −1, ν = 0.5, γ = 1,
and λ = 0, (c) β = −1, ν = 0.5, γ = 1, and λ = 0.

When the same data points are used in 2D space to get the interpolated CHTB curve at β = −1,
ν = 1, γ = 1, and λ = 0, the flower pattern is shown in Figure 17c.

The present applications exemplify our methodology for space curve analysis. The black curves in
the pictures correspond to the known or sketched portions, while the lacking section is predicted using
the interpolated CHTB curve.

a b c

Fig. 18. Flower with three parametrization methods for space CHTB curve at (a) β = 1, ν = 1, γ = 1, and
λ = 0, (b) β = 0, ν = 0, γ = 0, and λ = 0, (c) β = −1, ν = −1, γ = −1, and λ = 0.

In Figures 18a, 18b, and 18c, the uniform, centripetal, and chordal parameterization methods were
used to interpolate the space CHTB curve.
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Figures 19a, 19b, and 19c depict the computational modeling of cetaceans utilizing interpolated
spatial CHTB curves constructed using three parametric approaches. The shape parameters used are:
β = ν = γ = 1, λ = 0, β = ν = γ = λ = 0, and β = ν = γ = −1, λ = 0, respectively.

A certain impact of the shape parameter is evident in the modelling of the figures.

a b c

Fig. 19. Cetacean with three parametrization methods for space CHTB curve at (a) β = 1, ν = 1, γ = 1, and
λ = 0, (b) β = 0, ν = 0, γ = 0, and λ = 0, (c) β = −1, ν = −1, γ = −1, and λ = 0.

Figures 20a, 20b, and 20c depict a rat modeled using interpolated CHTB curves, utilizing the three
parametrization approaches for various shape parameters.

a b c

Fig. 20. Rat with three parametrization methods for space CHTB curve at (a) β = 1, ν = 1, γ = 1, and λ = 0,
(b) β = 0, ν = 0, γ = 0, and λ = 0, (c) β = −1, ν = −1, γ = −1, and λ = 0.

5. Conclusions

In this paper, the interpolation of GHTB curves is performed using the uniform, centripetal, and chordal
parametrization methods. For comparison purposes, the curve for selected parameters β = −1, ν = 1,
γ = 1, and γ = 0 were shown, alongside the curves where the parameters are β = 1, ν = −1, γ = 1,
and λ = 0, in both 2D and 3D Euclidean spaces. In principle, designers can choose suitable parameters
for their design. The choice of the parametrization method and its impact on curvature and torsion
will be influenced by both the parameters and the characteristics of the data. Experimentation and
adjustment of data points or parameters are often necessary to determine the most suitable curve.

This raises an important question for our future research. Given that parameters can be selected
arbitrarily to interpolate the specified data points, it is of interest to identify the optimal parameteri-
zation that will render the constructed curve aesthetically pleasing.
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[14] Wen-tao W., Guo-zhao W. Bézier curves with shape parameter. Journal of Zhejiang University – SCI-
ENCE A. 6, 497–501 (2005).

[15] Misro M. Y., Ramli A., Ali J. M. Quintic Trigonometric Bézier Curve with Two Shape Parameters. Sains
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Гiбридна тригонометрична iнтерполяцiя Безьє з рiвномiрною,
хордовою та доцентровою параметризацiєю у 3-вимiрному

евклiдовому просторi та її застосування

Мохамед Д., Рамлi А. Л. А.

Школа математичних наук, Малайзiйський науковий унiверситет (USM),
11800 Пулау Пiнанг, Малайзiя

Iнтерполяцiя в тригонометричних кривих Безьє полягає в побудовi кривої, що плавно
проходить через заданий набiр контрольних точок. У цiй роботi iнтерполяцiя точок
даних виконується за допомогою загальної гiбридної тригонометричної кривої Безьє
(GHTB). Ця крива мiстить чотири вiльнi параметри, що забезпечує гнучкiсть у її по-
будовi. Визначення контрольних точок на GHTB кривiй, виходячи з певної степенi,
дозволяє iнтерполювати криву, яка проходить через заданi точки. До кривих GHTB
застосовуються методи рiвномiрної, доцентрової та хордової параметризацiї. У статтi
обговорюються цi три методи параметризацiї кривої GHTB: рiвномiрна, доцентро-
ва та хордова. Згодом цi методи параметризацiї демонструються з використанням
наборiв точок даних як у 2-вимiрному, так i в 3-вимiрному евклiдовому просторi.
Дослiджуються кривина та кручення параметризованих кривих для рiзних значень
вiльних параметрiв у GHTB кривiй.

Ключовi слова: загальна гiбридна тригонометрична крива Безьє; рiвномiрна па-
раметризацiя; доцентрова параметризацiя; кручення.
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