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The Expectation-Maximization (EM) algorithm is an efficient method for estimating the
parameters of a mixture regression model in the presence of outliers in the Y-direction.
Unfortunately, this method breaks down when leverage points are present in the dataset.
The most common procedure used in the literature involves removing leverage points after
identifying them with single detection methods. However, some authors have pointed out
that single detection methods can be inaccurate and have therefore proposed multiple
diagnostic approaches. This manuscript proposes the Weighted EM (WEM) method to
address the problem of leverage points without requiring data deletion. Moreover, it builds
upon the DRGP (RMVN) framework, which is one of the multiple diagnostic methods.
Real data and simulation studies were conducted to evaluate the efficiency of the proposed
method compared to existing approaches. The results show that the WEM method is more
robust and reliable than other methods, particularly when sample sizes are small.
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1. Introduction

The Mixture Regression model has been used in many scientific fields, such as econometrics, engi-
neering, biology, and others, due to its ability to model the relationship between independent and
dependent variables. Quandt [1] and Quandt and Ramsay [2] note that there may be more than one
pattern of data across a single dataset, and variables are likely to cluster according to these patterns.
The structure of such data is constructed via unknown latent groups of variables would lead to un-
known regression models. In other words, the regression probabilistic model in terms of latent class
variable Z such that Z = i, the linear regression model can be written as follows,

Y = Xβ + ε, (1)

where X is the design matrix of (p + 1) independent variables with constant, βi is the regression
parameters of g sub-populations (groups), εi is the error term which has to be independent of x
with density fi(·) and mean zero, and Y is the dependent variable which has the same distribution
of εi with different parameters. The maximum Likelihood Estimation method (MLE) which is one
of the best methods to estimate the regression model parameters when the distribution of errors is
normal, is hard to derive when errors follow such a distribution. Moreover, it is not resistant to the
presence of outliers. Consequently, alternative methods should take into account two aspects: easy
computation and robustness. Dempster [3] proposed the Expectation–Maximization (EM) algorithm
which is robust to outliers and easy to calculate but it is not resistant to leverage points. This issue
of robustness in mixture regression models has been given the attention of the researchers in statistics
literature. Markatou [4] and Shen et al. [5] tried to reduce the impact of outliers in mixture regression
models by allocate down weights for each data point. Peel and McLachlan [6] suggested robust version
of mixture regression relying on the t-distribution. That is by replacing the normal density function
with the t-distribution in the mixture regression model as a robust procedure to overcome the problem
of outliers. This procedure is reasonable because the normal density is considered a special case of
t-distribution when the number of degrees of freedom tends to infinity. Song et al. [7] and Yao et al. [8]
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considered error distributions such as Laplace and t-distribution, respectively. Both distributions
can be expressed by scale mixture of a normal distribution. Yao et al. [8] proposed robust mixture
regression by incorporating the approach of mixture t-distributions of Peel and McLachlan [6]. This
paper assumes there may be a problem with accurately identifying all leverage points in robust mixture
regression model, particularly when at least one high leverage point is present. This is because these
methods use individual diagnostic methods. Thus, the target of this paper is to incorporate multiple
diagnostic measures, DRGP (RMVN) with EM to improve the performance of robust mixture regression
model when the random errors follow t-distribution. The rest of this paper is organized to present the
Mixture t-distribution in Section 2. Section 3 describes Robust Mixture Regression with t-distribution
by incorporating Multiple Diagnostic Measure. Section 4 includes simulation study; Section 5 presents
a real data example and the conclusion appears in Section 6.

2. Mixture t-distribution

Let the latent class variable Z is independent of X, the probability of (Z = i) equals πi where
i = 1, 2, . . . , g, then the conditional density function without observing Z is as follows,

f(yj,Xj ,Φ) =

g∑

i=1

πif(yj −X⊺

i β;σi, vi), j = 1, 2, . . . , n, (2)

where f(·) is the error density of t-distribution with v degree of freedom, scale parameter σ, Φ =
(π1, π2, . . . , πg, β1, β2, . . . , βg, σ1, σ2, . . . , σg)

′ is the unknown parameter vector,

f (ei;σi, vi) =
Γ
(vi+p

2

)
|σ|−0.5

(√
πivi

)p
Γ
(
vi
2

) {
1 +

e2j
viσi

}0.5(vi+p)
. (3)

In general, the Maximum Likelihood Estimate method (MLE) is used to find Φ̂

log f (yj, xj ,Φ) =
n∑

j=1

log

(
g∑

i

πi fi
(
yj;x

′
jβi, σi

)
)

(4)

and then Φ̂ = argmax
Φ

f (yj, xj ,Φ).

Since Eq. (4) does not have a solution, Peel and McLachlan [6] introduced the EM algorithm that is
sensitive to high leverage points. Yao et al. [8] modified the EM algorithm by applying their suggested
method after adaptively trimming leverage points.

3. Robust mixture regression with t-distribution

Assume that Zij = 1 if the jth observation is from the ith component and 0 otherwise, such that
Zi = (Zj1, Zj2, . . . , Zjg)

′. Then, the complete log-likelihood function for the complete data set,

ℓcn(Φ) =
n∑

j=1

g∑

i=1

Zij log
{
πi fi(yj − x′jβi;σi, vi)

}
, (5)

Peel and McLachlan [6] pointed out that this maximizer has no explicit solutions for βi, σ and vi,
respectively. Yao et al. [8] found that the above problem can be solved when the t-distribution expressed
as a scale mixture of normal distributions. They assumed ζ is another latent variable such that (y|ζ)
is normally distributed as N(µ, σ2|ζ) and has density function,

f(y;µ, σ|ζ) = 1

(2π)0.5
|σ/ζ|− 1

2 exp
(
−1

2(y − µ)′(σ|ζ)−1(y − µ)
)
, (6)

where ζ follows gamma distribution with shape and scale parameters both equal to 1
2v, respectively,

and the cor(ζ, Z) ≈ 0, then the density function of ζ is

f
(
ζ; 12v,

1
2v
)
=

1

Γ
(
1
2v
)
(
1
2v
)−( 1

2
v)

y(
1
2
v−1)e−

2ζ
v . (7)
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However, previous authors found that the complete likelihood function of mixture t-distribution
model for y, Z and ζ can be written as follows,

ℓcn(Φ; y, ζ, Z) =
n∑

j=1

g∑

i=1

Zij log(πi) +
n∑

j=1

g∑

i=1

Zij log
{
f
(
ζj;

1
2vi,

1
2vi
)}

+
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j=1

g∑

i=1

Zij

{
−1

2 log
(
2πσ2

)
+ 1

2 log(ζj)−
ζje

2
j

2σ2

}
.

(8)

3.1. The expectation (E-Step)

If the degrees of freedom in the second term of Eq. (8) are known, the E-step involves finding the
expectation of the complete data log-likelihood, E

[
ℓcn(Φ)|y, x,Φ(k)

]
as follows,
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3.2. The maximization (M-Step)

The M-step is to update parameters by maximizing
[
ℓcn(Φ)|y, x,Φ(k)

]
, where Φ(k) is the updates Φ at

the k iteration as follows,

π
(k+1)
i =

n∑

j=1

Φ
(k+1)
ij

n
.

The updating regression parameter β
(k+1)
i can be computed using weighted least squares method, when

the weights rely on ζ
(k+1)
ij ,

β
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
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It is obvious that ζ
(k+1)
ij is calculated from (2) of E-step in which increasing the standardized residuals

result in decreasing ζ
(k+1)
ij . Consequently, β

(k+1)
i will be robust against outliers in y space and σ(k+1)

is a robust scale estimate of the mixture regression,

σ(k+1) =

{∑n
j=1

∑g
i=1 Φ

(k+1)
ij ζ

(k+1)
ij

(
yj − xjβ

(k+1)
i

)2

n

}1/2

. (10)

However, the Eq. (9) of mixture regression model estimate is not robust to leverage points. Peel and
McLachlan [6] mentioned that when vi is unknown there is no explicit solution for vi in M-step. Yao [8]
introduced profile likelihood to overcome such a problem,

L(v) = max
Φ

n∑

j=1

log

{
g∑

i=1

πifi
(
yj;x

′
jβi, σi, v

)
}
. (11)

When vi = v1 = v2 = . . . = vg, the v̂ can be computed using EM algorithm, v̂ = argmaxv L(v),
and and it was found that L(v) can be computed from a set of grid points and noted that when the
maximum value of v is between 15–20, the t-distribution approximates the normal distribution. Yao
et al. [8] pointed out that when the v is large enough, the t-distribution becomes close to the normal
distribution, therefore the adaptively choosing v makes the EM algorithm consider the t-distribution
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as a scale mixture of normal distribution. However, L(v) estimate is not resistant to the presence of
leverage points. Yao et al. [8] tackle this problem by identifying the leverage points based on Minimum
Covariance Determinant (MCD) estimators introduced by Rousseeuw [9], and then trimmed them
before fitting the mixture model.

4. Modified robust mixture regression in term of t-distribution

It is obvious that accurate identification of leverage points is a crucial procedure due to the mixture
regression based on t-distribution tackles only the problem of outliers. It is well-known that Hat
matrix, H = X(X ′X)−1X ′ can be used to identify leverage points, when jth diagonal element of
H, hjj > 2p

n the jth predictor xj is a high leverage point. Sometimes, the Mahalanobis Distance

MD = (xj − x)Cov(X)−1(xj − x)′ has been used to detect the high leverage points too. The MD can
be written in terms of diagonal elements of H as follows,

MDj =
hjj − n−1

(n− 1)−1
.

When MDj > χ2
(p−1,0.975) the jth MD is considered a high leverage point. Rousseeuw and van

Zomeren [10] declared that due to x and Cov(X) are sensitive to the presence of outliers might create
the masking effect. The masking effect is defined as some leverage points probably not being detected
due to the effect of other high leverage points. The natural modification is to use a robust MD by
replacing the mean and covariance with robust estimates of location and scale for X, excluding the
constant term. Imon [11] considered the previous methods as individual diagnostic measures that
are affected by the masking and swamping phenomena and then proposed the multiple diagnostics
measure which is so called Generalized Potentials (GP). In spite of GP is better than the individual
diagnostic measure, Midi et al. (2009) found that GP reduced the number of swamping cases but could
not eliminate them completely, therefore, they introduced the Diagnostic Robust Generalized Potential
(DRGP) based on MVE which is the sibling method of MCD to improve the performance of GP. Uraibi
and Haraj [12] noted that constructing the comprehensive diagnostics depends primarily on identifying
an efficient matrix of location and dispersion that has to employ to robust the Mahalanobis distance
through fast concentration algorithms. One of these matrices that has proven its efficiency in previous
studies, such as (Uraibi et al. 2015; Talib et al. 2022), is the Reweighted Multivariate Normal location
and dispersion (RMVN) matrix, therefore, they proposed DRGP (RMVN) that showed that it is more
efficient and performs better than others. As mentioned above, most robust mixture regression methods
remove any high leverage points detected by robust identification methods. This paper suggests using
DRGP (RMVN) to detect high leverage points and then proposes two procedures, remove them with
the EM method in terms of the t-distribution or assign robust weights to reduce the effect of leverage
points, as follows,

Wi =
χ2
(p,0.05)

MDj
.

The removed method is called REM and the weighted one is called (WEM).

5. Simulation

Consider the mixture linear regression model as follows:

Y =

{
θ0 + θ1X1 + θ2X2 + ε1, if Z = 1,
θ0 − θ1X1 − θ2X2 + ε2, if Z = 2,

where Z is the latent variable and when P (Z = 1) is π1 = 0.25 of the components of Y and P (Z = 2)
is constructed π2 = 1 − π1. X1 and X2 are sampled independently and identically from the N(0, 1)
distribution with n = {45, 75, 100, 150, 300, 500}. Let the initial values θi be

θi =

{
β1 = (0, 1, 2) σ = 3 π1 = 0.25
β2 = (0,−1,−2) σ = 3 π2 = 0.75

}
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and the error terms ε1 and ε2 have the same distribution (standard normal). Finding Y as a mixture
distribution, requires generating n data points from uniform distribution u ∼ UNIF(0, 1) such that

ε =

{
u×N(0, 1) if u 6 0.75
u× t(v) if u > 0.75

}
,

v is degree of freedom, when t(v = 1) corresponds to the Cauchy distribution, and t(v = 2) is t-
distribution with two degrees of freedom, and then finding

Y =

{
0 +X1 + 2X2 + ε if u 6 π
0−X1 − 2X2 + ε if u > π

}
,

where π = 0.25 of the components of Y . Two cases have been considered for contaminated data points
as follows,

I. ε ∼ t(1) with 10% of leverage points being X1 = X1 × 10, X2 = X2 × 10 and Y = Y × 200;

II. ε ∼ t(2) with 10% of leverage points being X1 = X1 × 10, X2 = X2 × 10 and Y = Y × 200.

These steps are repeated 5000 times and the mean squared errors of the estimated components and
bias are computed as follows,

Mse(θ̂i) =

∑5000
j=1

(
θ̂i − θi

)2

5000
, i = 1, 2,

Mse(π̂i) =

∑5000
j=1 (π̂i − π̂0.25,i)

2

5000
, i = 1, 2.

The EM, REM and WEM are compared and the best method is the one that has the lowest values of
the above criteria. The results which are presented in Table 1, show when the degree of freedom is one
and the dataset is having 10% leverage points, the Mse(θ̂i) WEM has the lowest values than EM and
REM methods, when n = {45, 75, 100, 150, 300} except n = 500 is displayed that REM outperforms
EM and WEM. On the other hand, Mse(π̂0.25,i) values of REM and WEM are equivalent with different
sample sizes and are better than the Mse(π̂0.25,i) value from EM.

Table 1. The Mse(θ̂i), Mse(π̂0.25) of simulation study when (v = 1).

n Method Mse(θ̂0) Mse(θ̂1) Mse(θ̂2) Mse(θ̂0.25,i)

45
EM 1.625 1.049 2.692 0.024

REM 0.587 1.273 1.686 0.015
WEM 0.509 1.021 1.492 0.015

75
EM 1.014 0.843 2.757 0.025

REM 0.361 0.503 0.590 0.005
WEM 0.275 0.500 0.275 0.005

100
EM 0.802 0.742 2.641 0.025

REM 0.258 0.371 0.431 0.004
WEM 0.211 0.271 0.360 0.004

150
EM 0.566 0.856 3.20 0.028

REM 0.145 0.204 0.346 0.004
WEM 0.108 0.168 0.239 0.004

300
EM 0.287 0.931 3.569 0.04

REM 0.047 0.057 0.056 0.002
WEM 0.053 0.059 0.055 0.002

500
EM 0.083 0.972 3.845 0.044

REM 0.029 0.038 0.029 0.002
WEM 0.034 0.045 0.039 0.002

Table 2 shows the results of the simulation of case II when the distribution of random errors is
t-distribution with (v = 2) and the 10% of leverage points are present in the dataset. It is obvious
that when n = {45, 75, 100, 150} the values Mse

(
θ̂0
)
, Mse

(
θ̂1
)

and Mse
(
θ̂2
)

of WEM is much lower
than their counterparts in EM and REM methods. The performances of REM and WEM become very
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close when n = {300, 500} due to the values of Mse
(
θ̂0
)
, Mse

(
θ̂1
)

and Mse
(
θ̂2
)

for both methods are
approximately equal, and their Mse(π̂0.25,i) values are equal. It is notable that the Mse

(
π̂0.25,i

)
values

of WEM are lower than those of the others when the sample size is smaller than 300.

Table 2. The Mse
(
θ̂i
)
, Mse

(
π̂0.25

)
of simulation study when (v = 2).

n Method Mse(θ̂0) Mse(θ̂1) Mse(θ̂2) Mse(π̂0.25,i)

45
EM 1.154 1.121 3.33 0.033

REM 0.801 1.388 2.312 0.015
WEM 0.591 1.113 1.599 0.014

75
EM 0.526 1.006 3.916 0.036

REM 0.312 0.727 1.274 0.007
WEM 0.258 0.556 1.051 0.006

100
EM 0.638 0.953 3.378 0.036

REM 0.168 0.286 0.406 0.004
WEM 0.123 0.253 0.331 0.004

150
EM 0.446 0.999 3.873 0.038

REM 0.122 0.133 0.180 0.004
WEM 0.095 0.112 0.114 0.004

300
EM 0.295 1.034 3.994 0.041

REM 0.047 0.049 0.05 0.002
WEM 0.043 0.045 0.05 0.002

500
EM 0.167 1.071 4.24 0.04

REM 0.021 0.024 0.025 0.002
WEM 0.021 0.024 0.026 0.002

6. Market value data

To better explain the robustness performance of the WEM method compared with REM and EM
methods, the market value data of Iraqi trade banks, as previously presented by Uraibi and Haraj [12]
was chosen. The Trading Rate and earning per share (EPS) variables were chosen in this paper out
of nine financial ratios in the original dataset that affect the market value for the period (2011–2015).
First, the regression model is fitted using EM and the residuals have been plotted in Figure 1. It
obvious that there is more than one pattern of residuals and each pattern may represent a random
distribution. Consequently, this situation leads to occur the heterogeneous problem and making the
random distribution of residuals is mixture. Figure 2 shows the normalized EPS and Trading Rate
ratios, which have some outliers (leverage points) due to some points lying far from the bulk of the
data and also appear to suffer from heterogeneity.

Table 3. The MSE and MAE
of market value data.

Method EM REM WEM
MSE 0.61 41.00 40.02
MAE 0.96 1.76 1.72

The performance of the WEM method is the best
among the EM and REM methods with the market
value of Iraq stock market as shown in Table 3. The
mean squared error (MSE) and mean absolute er-
ror (MAE) of WEM are 40.02 and 1.72, respectively,
both lower than those of the other methods.

7. Conclusion

The main objective of this paper is to improve the performance of the EM method in the presence
of leverage points in mixture regression data when the distribution of random errors is t-distribution.
From the results presented in Tables 1–3, it can be concluded that trimming leverage points in small
sample sizes is not an effective procedure as it reduces the degrees of freedom and consequently increases
the mean squared error. Instead of removing some rows that have leverage points by giving zero weight,
the WEM method assigns low weights to those rows, and in this case, the method preserves the degrees
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of freedom. This is the main reason why the WEM method outperforms the others; moreover, it is
resistant to the presence of outliers and leverage points together.
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Модель регресiї зваженої сумiшi на основi t-розподiлу
за наявностi точки важеля

Хассан С. У.

Кафедра статистики, Унiверситет Аль-Кадiсiя, вул. Альджамеа, Дiванiя, Iрак

Алгоритм очiкування–максимiзацiї (EM) є ефективним методом оцiнки параметрiв
моделi регресiї сумiшi за наявностi викидiв у Y-напрямку. На жаль, цей метод не
працює, якщо точки важеля присутнi в наборi даних. Найчастiше в статтях викори-
стовували процедуру видалення важелiв пiсля їх iдентифiкацiї за допомогою певних
методiв виявлення. Деякi автори вказували на те, що окремi методи виявлення мо-
жуть бути неточними, тому запропонували кiлька методiв дiагностики. Метод зваже-
ної EM (WEM) був запропонований у цьому рукописi для подолання проблеми точок
важеля без видалення. Крiм того, вiн заснований на DRGP (RMVN), який є одним iз
багатьох методiв дiагностики. Для визначення ефективностi запропонованого методу
в порiвняннi з попереднiми методами були розглянутi реальнi данi та симуляцiї. Ре-
зультат показує, що метод оцiнки методу WEM є надiйнiшим i надiйнiшим, нiж iншi,
особливо там, де розмiри вибiрки невеликi.

Ключовi слова: надiйний; регресiя сумiшi; точка важеля; DRGP.
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