
DEEPER WASM INTEGRATION WITH AI/ML: FACILITATING HIGH-
PERFORMANCE ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING 

MODELS IN MICRO-FRONTEND APPLICATIONS 

 Oleksandr Stepanov, PhD Student, Yevhen Bershchanskyi, PhD Student 
Lviv Polytechnic National University, Ukraine 

e-mails: oleksandr.v.stepanov@lpnu.ua, yevhen.v.bershchanskyi@lpnu.ua 

https://doi.org/10.23939/istcmtm2025.03. 

Abstract. WebAssembly (WASM) has emerged as a compelling and transformative solution for executing high-
performance Artificial Intelligence (AI) and Machine Learning (ML) models directly within frontend web applications. 
Traditionally, AI/ML model deployment has been dominated by backend servers due to significant computational demands, 
coupled with the performance limitations of JavaScript and the overhead of client-server communication. By leveraging WASM's 
performance and portability, it becomes possible to execute computationally intensive tasks, such as inference in deep neural 
networks, entirely on the client side. This shift leads to near-native performance, significantly reduced latency, enhanced user 
experience, and improved user privacy by processing data locally. The sources investigate WASM's potential, present 
methodologies for deploying WASM-based AI/ML solutions, and benchmark their performance, demonstrating significant speed 
improvements and WASM's superiority over JavaScript in resource-intensive tasks. While acknowledging challenges like browser 
compatibility and threading limitations, WASM is seen as revolutionizing frontend AI/ML performance and holding substantial 
promise for the future of web-based AI applications. 

Key words: WASM, Performance comparison, Artificial Intelligence, Machine Learning, Frontend computing, 
Performance optimization, Client-side processing. 

 
1. Introduction 

The increasing demand for seamless integration of 
AI and ML features into web applications traditionally 
faced significant challenges. Historically, the 
computational intensity of AI/ML models has largely 
confined their execution to server-side platforms. This 
server-centric approach introduces various bottlenecks, 
including high latency, increased bandwidth 
consumption, and privacy concerns due to necessary data 
transfer and processing. Even JavaScript-based 
frameworks, while enabling some client-side AI, often 
struggle with inherent performance limitations. WASM, 
introduced as a web standard in 2017, offers a powerful 
solution. WASM is a low-level binary instruction format 
designed as a portable compilation target for high-
performance programming languages. Crucially, unlike 
JavaScript which is interpreted, WASM executes at near-
native speeds within the browser, while upholding web 
security guarantees. This capability allows for the 
compilation and execution of computationally intensive 
AI/ML models directly in the client's browser. By 
enabling frontend deployment of AI/ML models, 
WASM effectively mitigates latency and network 
dependency, leading to faster response times and a more 
responsive user experience for real-time AI applications 
like image recognition or natural language processing. 
While the provided sources focus on "frontend 
applications" and "browser-side AI" broadly, these 
advancements are highly pertinent for facilitating high-
performance AI/ML models within modern web 
architectures, including micro-frontend applications. 

2. Problem Statement 

The central challenge is integrating 
computationally intensive AI and ML models effectively 
into frontend web applications. The growing demand for 
real-time, intelligent features directly in the browser 
clashes with the limitations of existing deployment 
strategies. Traditionally, AI/ML models are processed on 
servers, but this approach introduces significant network 
latency from client-server communication, raises privacy 
concerns due to the transmission of sensitive data, and 
creates a dependency on stable network connectivity. 
While executing models on the client-side with 
JavaScript-based frameworks like TensorFlow.js can 
address these issues, JavaScript is not optimized for 
heavy numerical computations. Its inherent performance 
constraints and memory management overhead severely 
limit the complexity and speed of models that can be 
feasibly run in the browser. Therefore, the core problem 
is the absence of a technology that provides high-
performance, near-native computational speed directly 
within the browser's secure environment. This 
technological gap hinders developers from deploying the 
complex, low-latency, and privacy-preserving AI/ML 
applications needed for the next generation of the web. 

3. Goal 

The key goal of this paper is to demonstrate that 
WebAssembly (WASM) is a transformative technology 
for deploying high-performance AI and ML models 
directly within frontend web applications. The work 
aims to prove that by facilitating client-side model 
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execution, WASM resolves the fundamental problems of 
traditional approaches, namely eliminating network 
latency, enhancing user privacy, and delivering near-
native performance within the secure browser sandbox. 

4. Research objective 
To achieve the stated goal, the research 

sequentially addresses several key tasks. First, it 
analyzes the fundamental limitations of existing 
approaches to AI/ML integration in web applications. 
The primary issues stem from the client-side 
environment, where JavaScript's single-threaded nature 
and interpretation overhead, even with JIT compilation, 
significantly limit computational performance for ML 
workloads that rely on intensive, repetitive calculations. 
Concurrently, its dynamic typing and garbage collection 
introduce unpredictable latency spikes, which are 
detrimental to real-time applications like augmented 
reality or live video analysis. Furthermore, JavaScript's 
standard 64-bit floating-point number representation can 
negatively affect ML model accuracy, as many models 
are optimized for 32-bit floats, and the ecosystem has a 
limited availability of optimized numerical computing 
libraries compared to the rich server-side environments 
of Python. While server-side ML processing addresses 
these computational limitations, it introduces its own set 
of drawbacks, including network latency from round-
trips for inference requests, significant server resource 
constraints and costs during peak usage, and critical data 
privacy concerns due to the necessity of transmitting 
potentially sensitive user data, which can conflict with 
regulations like GDPR. This approach also creates a hard 
dependency on a stable internet connection [1-6]. 
Therefore, the central task is to systematize the technical 
pipeline for integrating AI/ML models via WASM, 
which follows a structured sequence of steps from 
creation to execution (Fig. 1), a carefully orchestrated 
sequence of steps designed to bring powerful ML 
capabilities directly and securely into the browser. This 
process is not monolithic but rather a continuous flow 
from creation to execution, beginning with model 
training and culminating in client-side inference, 
creating a workflow engineered for high performance 
and efficiency that stands in stark contrast to traditional 
server-based approaches [7, 8]. The first stage is model 
training, a computationally intensive phase typically 
carried out in resource-rich, offline environments using 
languages like Python or C++ and popular frameworks 
such as TensorFlow or PyTorch. Following this, the 
model undergoes a critical transformation by being 
compiled into the WASM format, a linchpin step that 
bridges the backend training environment and the 
frontend execution target by providing a universal, high-
performance compilation target. Since the trained model 
in its original form cannot be understood by a web 

browser, it must be converted into WASM 's low-level 
binary instruction format, which ensures that the 
complex mathematical operations required for ML 
inference can be executed at near-native speeds [9-12]. 
Once compiled, the WASM module is ready for browser 
deployment, where it is treated like any other asset and 
delivered efficiently using techniques like lazy loading, 
streaming, or caching via Content Delivery Networks 
(CDNs) to avoid hampering the user experience [13]. 
The final stage is client-side inference, where the 
WASM model runs directly in the user's browser, using 
their device's processing power to make predictions in 
real time, thereby eliminating network latency and 
enhancing user privacy. Delving deeper, this compilation 
process involves several critical steps, starting with 
model serialization, which converts trained models to 
portable, standardized formats like ONNX or 
TensorFlow Lite [14,15], packaging the model's 
architecture and learned parameters into a compact, 
interoperable file that decouples it from the original 
training framework. The next step is runtime integration, 
which involves embedding inference engines that have 
themselves been compiled to WASM, such as the 
ONNX.js or TensorFlow.js WASM backends [16]. 
These engines provide the necessary high-level API 
functions for JavaScript to load the serialized model, 
manage memory, and efficiently execute it within the 
WASM environment, abstracting the low-level 
complexities from the developer.functions to load and 
efficiently execute the serialized model within the 
WASM environment [17]. 

The runtime architecture begins by 
asynchronously fetching and instantiating the compiled 
WASM file that contains the AI model. An inference 
engine is then created from this module, which is used to 
execute the model and make predictions on new input 
data directly within the browser. Since performance is 
paramount, the next step is optimization; this involves 
applying WASM-specific optimizations tailored for 
heavy numerical computations [18,19]. This can include 
leveraging advanced CPU features like SIMD (Single 
Instruction, Multiple Data) to perform parallel 
calculations on data vectors, drastically accelerating the 
mathematical operations at the heart of ML algorithms. 
These optimizations are what truly unlock the 
performance potential of running AI in the browser. 
Finally, memory management is a crucial consideration. 
Developers must implement efficient memory allocation 
strategies to ensure the application remains stable and 
responsive [20-22]. Unlike JavaScript's automatic 
garbage collection, WASM's linear memory model 
provides more direct control, allowing for predictable 
performance without the unexpected latency spikes that 
can be caused by a garbage collector. This careful 
management of memory is essential for building robust, 
real-time AI applications on the web. 



Measuring equipment and metrology. Vol. 86, No. 3, 2025 87 

 
 

 
Fig.1. Schema of the AI/ML Deployment Pipeline using WASM  

 
// Example WASM module initialization 
const wasmModule = await WebAssembly.instantiateStreaming( 
    fetch('ml-model.wasm') 
); 
 
const modelInstance = new MLInferenceEngine(wasmModule); 
const prediction = await modelInstance.predict(inputTensor); 
 
WebAssembly's SIMD (Single Instruction, Multiple Data) support enables vectorized operations: 
wat 
;; WebAssembly Text Format example 
(func $vector_multiply (param $a v128) (param $b v128) (result v128) 
    (f32x4.mul (local.get $a) (local.get $b)) 
) 
 

A key stage of the research is the analysis of 
performance optimization methods. To unlock WASM's 
full potential, the study examines critical techniques tailored 
for heavy numerical computations. This includes leveraging 
advanced CPU features like SIMD (Single Instruction, 

Multiple Data) for parallel data processing and utilizing 
Web Workers for multi-threading to prevent UI freezing 
during intensive computations. Efficient memory manage-
ment via WASM's linear memory model is also analyzed as 
a crucial factor for ensuring stable, real-time performance. 

 
// Combining WASM with Web Workers enables parallel processing: 
// Main thread 
const worker = new Worker('ml-worker.js'); 
worker.postMessage({ 
    wasmModule: wasmModule, 
    inputData: preprocessedData 
}); 
 
// Worker thread 
self.onmessage = async function(e) { 
    const result = await runInference(e.data.wasmModule, e.data.inputData); 
    self.postMessage(result); 
}; 
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Table. Performance Results 
Task JavaScript (ms) WASM (ms) Native (ms) WASM/JS Ratio 

ResNet-50 Inference 2,340 890 680 2.63x 
BERT Sentiment 1,850 720 520 2.57x 

Matrix Mult 
(1024x1024) 

450 125 95 3.6x 

 
Finally, to empirically validate WASM's 

effectiveness, a thorough comparative performance 
analysis is conducted between JavaScript, WASM, and 
native code. The methodology involves running key ML 
workloads–specifically, image classification (ResNet-
50), natural language processing (BERT), and large-
scale matrix multiplication–to provide clear, data-driven 
evidence of the speedups gained by using WASM for 
frontend AI/ML computations. 

WASM demonstrates superior memory efficiency 
compared to JavaScript due to its fundamental design. Its 
linear memory model allows for predictable allocation, 
which significantly reduces fragmentation and eliminates 
the unpredictable latency spikes associated with 
JavaScript's garbage collection. This is further enhanced 
by the elimination of JavaScript object wrapping, a 
process that adds unnecessary overhead. By working 

with a more direct and contiguous memory layout, 
WASM improves the spatial locality for numerical data. 
This results in better cache efficiency, as the CPU can 
fetch and process data more quickly, a critical advantage 
for computationally intensive ML tasks (Table 1). 

A computer vision application for real-time object 
detection highlights WASM's capabilities. By 
implementing a WASMObjectDetector that handles 
image preprocessing and inference on the client-side, the 
application saw dramatic performance gains. The 
processing time for each frame was reduced from 180ms 
to just 45ms, enabling smooth, 60 FPS real-time 
processing. This shift to client-side execution also led to 
a significant 75% reduction in server costs, proving 
WASM's value for both performance and economic 
efficiency in demanding applications like computer 
vision. 

 
class WASMObjectDetector { 
    constructor(wasmModule) { 
        this.detector = new wasmModule.YOLODetector(); 
    } 
     
    async detectObjects(imageData) { 
        const tensorData = this.preprocessImage(imageData); 
        const detections = this.detector.infer(tensorData); 
        return this.postprocessDetections(detections); 
    } 
} 
 

In another case study, a client-side text analysis 
system showcased WASM's power in Natural 
Language Processing (NLP). The system performs 
tasks like sentiment analysis by processing text 
directly in the browser. This approach completely 
eliminated the need for server round-trips, which 

drastically reduced latency from 200ms down to 
35ms. A key advantage of this client-side pipeline is 
enhanced privacy, as sensitive text is processed on the 
user's device and never leaves the browser. This 
demonstrates WASM's potential for creating fast, 
private, and efficient NLP applications. 

 

 
Deploying large ML models with WASM presents 

the technical challenge of managing model files that are too 
big for practical download. Several optimization solutions 

exist to address this. Model quantization reduces file size by 
lowering the precision of the model's numbers, for example 
from FP32 to INT8. Another approach is model pruning, 

class WASMNLPPipeline { 
    async analyzeSentiment(text) { 
        const tokens = this.tokenizer.encode(text); 
        const embeddings = this.embeddingModel.forward(tokens); 
        const sentiment = this.classificationModel.predict(embeddings); 
        return sentiment; 
    } 
} 
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which further shrinks the model by eliminating redundant 
or unnecessary parameters. Additionally, progressive model 
loading with streaming compilation can be used,  allowing  

the application to start functioning before the entire model 
has been downloaded, improving the user's perceived load 
time. 
 

 

A significant challenge is addressing the varying 
levels of WASM support across different browsers. To 
handle this, developers can implement feature detection 
functions that programmatically check for essential 

capabilities. These checks can verify support for basic 
WASM, advanced features like SIMD instructions, and 
multi-threading, ensuring the application adapts 
gracefully. 

 

 

Debugging and profiling WASM ML applications 
require specialized tools to manage their complexity. 
Developers can use Chrome DevTools, which offers 
WASM debugging support complete with source maps, 
allowing them to step through code written in languages 
like C++ or Rust as if it were JavaScript. For 
performance tuning, custom Performance Profilers are 
used to track ML-specific metrics, helping to identify 
computational bottlenecks within the model's execution. 
Additionally, Memory Analyzers provide essential tools 
for inspecting WASM's linear memory, which is crucial 
for diagnosing memory-related issues and optimizing 
data layout. 

WASM‘s security model provides significant 
guarantees making it a safe environment for running 

complex code like AI/ML models within a browser The 
foundation of this model is its sandboxing and isolation 
which ensures that WASM code runs in a tightly controlled 
environment separate from the host system This security is 
upheld by several key features Memory Safety Built-in 
bounds checking automatically prevents buffer overflows a 
common security vulnerability Control Flow Integrity 
WASM enforces a structured control flow which stops 
malicious code from making arbitrary jumps to unintended 
parts of the program API Restrictions WASM modules have 
no default access to browser APIs they can only interact 
with functionalities that are explicitly imported limiting 
their potential for misuse. 

Future directions for WASM AI/ML integration 
focus on emerging technologies and new optimization 

// Progressive model loading 
async function loadModelProgressive(modelUrl) { 
    const response = await fetch(modelUrl); 
    const reader = response.body.getReader(); 
     
    let wasmModule = null; 
    const decoder = new StreamingDecoder(); 
     
    while (true) { 
        const { done, value } = await reader.read(); 
        if (done) break; 
         
        const chunk = decoder.decode(value); 
        if (chunk.isComplete) { 
            wasmModule = await WebAssembly.instantiate(chunk.buffer); 
            break; 
        } 
    } 
     
    return wasmModule; 
} 

function checkWASMSupport() { 
    const features = { 
        basic: typeof WebAssembly === 'object', 
        simd: WebAssembly.validate(new Uint8Array([0x00, 0x61, 0x73, 0x6d, 0x01, 0x00, 0x00, 0x00])), 
        threads: typeof SharedArrayBuffer !== 'undefined' 
    }; 
     
    return features; 
} 
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opportunities, including direct GPU access through 
WebGPU for parallel computations , broader runtime 
support via the WASM System Interface (WASI), and 
modular applications with the Component Model, 
alongside optimizations like WASM-based automatic 
differentiation for on-device training, dynamic just-in-
time compilation for models, and hardware acceleration 
with specialized AI processors. 

The industry impact of adopting WASM for 
AI/ML is significant, driven by compelling performance 
economics and a wide range of applications. Financially, 
it offers a 60-80% reduction in server infrastructure costs 
by offloading computation, eliminates continuous data 
transmission to save on bandwidth, and provides linear 
scalability as the user base grows. This technology 
shows particular promise in key sectors, including edge 
computing on IoT devices, processing privacy-sensitive 
data in healthcare, real-time fraud detection in financial 
services, and content generation for creative tools. 

5. Conclusions 

WASM represents a paradigm shift in frontend 
AI/ML deployment, offering near-native performance 
while maintaining web platform security and acces-
sibility. Our analysis demonstrates significant perfor-
mance improvements, with WASM implementations 
achieving 2-4x speedups over JavaScript equivalents 
while enabling new application architectures impossible 
with traditional approaches. 

The technology addresses critical limitations in 
current web-based AI/ML systems, including 
computational performance, privacy concerns, and 
scalability challenges. As browser support continues to 
mature and optimization techniques advance, WASM-
based AI/ML integration is positioned to become the 
standard for intelligent web applications. 

Future research directions include enhanced GPU 
integration, standardized ML model formats for WASM, 
and development of specialized debugging and profiling 
tools. The convergence of WASM and AI technologies 
promises to democratize access to powerful ML 
capabilities while maintaining the open, accessible 
nature of the web platform. 
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