
DEEPER WASM INTEGRATION WITH AI/ML: FACILITATING HIGH-
PERFORMANCE ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING

MODELS IN MICRO-FRONTEND APPLICATIONS

 Oleksandr Stepanov, PhD Student, Yevhen Bershchanskyi, PhD Student
Lviv Polytechnic National University, Ukraine

e-mails: oleksandr.v.stepanov@lpnu.ua, yevhen.v.bershchanskyi@lpnu.ua

https://doi.org/10.23939/istcmtm2025.03.

Abstract. WebAssembly (WASM) has emerged as a compelling and transformative solution for executing high-
performance Artificial Intelligence (AI) and Machine Learning (ML) models directly within frontend web applications.
Traditionally, AI/ML model deployment has been dominated by backend servers due to significant computational demands,
coupled with the performance limitations of JavaScript and the overhead of client-server communication. By leveraging WASM's
performance and portability, it becomes possible to execute computationally intensive tasks, such as inference in deep neural
networks, entirely on the client side. This shift leads to near-native performance, significantly reduced latency, enhanced user
experience, and improved user privacy by processing data locally. The sources investigate WASM's potential, present
methodologies for deploying WASM-based AI/ML solutions, and benchmark their performance, demonstrating significant speed
improvements and WASM's superiority over JavaScript in resource-intensive tasks. While acknowledging challenges like browser
compatibility and threading limitations, WASM is seen as revolutionizing frontend AI/ML performance and holding substantial
promise for the future of web-based AI applications.

Key words: WASM, Performance comparison, Artificial Intelligence, Machine Learning, Frontend computing,
Performance optimization, Client-side processing.

1. Introduction

The increasing demand for seamless integration of
AI and ML features into web applications traditionally
faced significant challenges. Historically, the
computational intensity of AI/ML models has largely
confined their execution to server-side platforms. This
server-centric approach introduces various bottlenecks,
including high latency, increased bandwidth
consumption, and privacy concerns due to necessary data
transfer and processing. Even JavaScript-based
frameworks, while enabling some client-side AI, often
struggle with inherent performance limitations. WASM,
introduced as a web standard in 2017, offers a powerful
solution. WASM is a low-level binary instruction format
designed as a portable compilation target for high-
performance programming languages. Crucially, unlike
JavaScript which is interpreted, WASM executes at near-
native speeds within the browser, while upholding web
security guarantees. This capability allows for the
compilation and execution of computationally intensive
AI/ML models directly in the client's browser. By
enabling frontend deployment of AI/ML models,
WASM effectively mitigates latency and network
dependency, leading to faster response times and a more
responsive user experience for real-time AI applications
like image recognition or natural language processing.
While the provided sources focus on "frontend
applications" and "browser-side AI" broadly, these
advancements are highly pertinent for facilitating high-
performance AI/ML models within modern web
architectures, including micro-frontend applications.

2. Problem Statement

The central challenge is integrating
computationally intensive AI and ML models effectively
into frontend web applications. The growing demand for
real-time, intelligent features directly in the browser
clashes with the limitations of existing deployment
strategies. Traditionally, AI/ML models are processed on
servers, but this approach introduces significant network
latency from client-server communication, raises privacy
concerns due to the transmission of sensitive data, and
creates a dependency on stable network connectivity.
While executing models on the client-side with
JavaScript-based frameworks like TensorFlow.js can
address these issues, JavaScript is not optimized for
heavy numerical computations. Its inherent performance
constraints and memory management overhead severely
limit the complexity and speed of models that can be
feasibly run in the browser. Therefore, the core problem
is the absence of a technology that provides high-
performance, near-native computational speed directly
within the browser's secure environment. This
technological gap hinders developers from deploying the
complex, low-latency, and privacy-preserving AI/ML
applications needed for the next generation of the web.

3. Goal

The key goal of this paper is to demonstrate that
WebAssembly (WASM) is a transformative technology
for deploying high-performance AI and ML models
directly within frontend web applications. The work
aims to prove that by facilitating client-side model

Measuring equipment and metrology. Vol. 86, No. 3, 2025 86

execution, WASM resolves the fundamental problems of
traditional approaches, namely eliminating network
latency, enhancing user privacy, and delivering near-
native performance within the secure browser sandbox.

4. Research objective
To achieve the stated goal, the research

sequentially addresses several key tasks. First, it
analyzes the fundamental limitations of existing
approaches to AI/ML integration in web applications.
The primary issues stem from the client-side
environment, where JavaScript's single-threaded nature
and interpretation overhead, even with JIT compilation,
significantly limit computational performance for ML
workloads that rely on intensive, repetitive calculations.
Concurrently, its dynamic typing and garbage collection
introduce unpredictable latency spikes, which are
detrimental to real-time applications like augmented
reality or live video analysis. Furthermore, JavaScript's
standard 64-bit floating-point number representation can
negatively affect ML model accuracy, as many models
are optimized for 32-bit floats, and the ecosystem has a
limited availability of optimized numerical computing
libraries compared to the rich server-side environments
of Python. While server-side ML processing addresses
these computational limitations, it introduces its own set
of drawbacks, including network latency from round-
trips for inference requests, significant server resource
constraints and costs during peak usage, and critical data
privacy concerns due to the necessity of transmitting
potentially sensitive user data, which can conflict with
regulations like GDPR. This approach also creates a hard
dependency on a stable internet connection [1-6].
Therefore, the central task is to systematize the technical
pipeline for integrating AI/ML models via WASM,
which follows a structured sequence of steps from
creation to execution (Fig. 1), a carefully orchestrated
sequence of steps designed to bring powerful ML
capabilities directly and securely into the browser. This
process is not monolithic but rather a continuous flow
from creation to execution, beginning with model
training and culminating in client-side inference,
creating a workflow engineered for high performance
and efficiency that stands in stark contrast to traditional
server-based approaches [7, 8]. The first stage is model
training, a computationally intensive phase typically
carried out in resource-rich, offline environments using
languages like Python or C++ and popular frameworks
such as TensorFlow or PyTorch. Following this, the
model undergoes a critical transformation by being
compiled into the WASM format, a linchpin step that
bridges the backend training environment and the
frontend execution target by providing a universal, high-
performance compilation target. Since the trained model
in its original form cannot be understood by a web

browser, it must be converted into WASM 's low-level
binary instruction format, which ensures that the
complex mathematical operations required for ML
inference can be executed at near-native speeds [9-12].
Once compiled, the WASM module is ready for browser
deployment, where it is treated like any other asset and
delivered efficiently using techniques like lazy loading,
streaming, or caching via Content Delivery Networks
(CDNs) to avoid hampering the user experience [13].
The final stage is client-side inference, where the
WASM model runs directly in the user's browser, using
their device's processing power to make predictions in
real time, thereby eliminating network latency and
enhancing user privacy. Delving deeper, this compilation
process involves several critical steps, starting with
model serialization, which converts trained models to
portable, standardized formats like ONNX or
TensorFlow Lite [14,15], packaging the model's
architecture and learned parameters into a compact,
interoperable file that decouples it from the original
training framework. The next step is runtime integration,
which involves embedding inference engines that have
themselves been compiled to WASM, such as the
ONNX.js or TensorFlow.js WASM backends [16].
These engines provide the necessary high-level API
functions for JavaScript to load the serialized model,
manage memory, and efficiently execute it within the
WASM environment, abstracting the low-level
complexities from the developer.functions to load and
efficiently execute the serialized model within the
WASM environment [17].

The runtime architecture begins by
asynchronously fetching and instantiating the compiled
WASM file that contains the AI model. An inference
engine is then created from this module, which is used to
execute the model and make predictions on new input
data directly within the browser. Since performance is
paramount, the next step is optimization; this involves
applying WASM-specific optimizations tailored for
heavy numerical computations [18,19]. This can include
leveraging advanced CPU features like SIMD (Single
Instruction, Multiple Data) to perform parallel
calculations on data vectors, drastically accelerating the
mathematical operations at the heart of ML algorithms.
These optimizations are what truly unlock the
performance potential of running AI in the browser.
Finally, memory management is a crucial consideration.
Developers must implement efficient memory allocation
strategies to ensure the application remains stable and
responsive [20-22]. Unlike JavaScript's automatic
garbage collection, WASM's linear memory model
provides more direct control, allowing for predictable
performance without the unexpected latency spikes that
can be caused by a garbage collector. This careful
management of memory is essential for building robust,
real-time AI applications on the web.

Measuring equipment and metrology. Vol. 86, No. 3, 2025 87

Fig.1. Schema of the AI/ML Deployment Pipeline using WASM

// Example WASM module initialization
const wasmModule = await WebAssembly.instantiateStreaming(
 fetch('ml-model.wasm')
);

const modelInstance = new MLInferenceEngine(wasmModule);
const prediction = await modelInstance.predict(inputTensor);

WebAssembly's SIMD (Single Instruction, Multiple Data) support enables vectorized operations:
wat
;; WebAssembly Text Format example
(func $vector_multiply (param $a v128) (param $b v128) (result v128)
 (f32x4.mul (local.get $a) (local.get $b))
)

A key stage of the research is the analysis of
performance optimization methods. To unlock WASM's
full potential, the study examines critical techniques tailored
for heavy numerical computations. This includes leveraging
advanced CPU features like SIMD (Single Instruction,

Multiple Data) for parallel data processing and utilizing
Web Workers for multi-threading to prevent UI freezing
during intensive computations. Efficient memory manage-
ment via WASM's linear memory model is also analyzed as
a crucial factor for ensuring stable, real-time performance.

// Combining WASM with Web Workers enables parallel processing:
// Main thread
const worker = new Worker('ml-worker.js');
worker.postMessage({
 wasmModule: wasmModule,
 inputData: preprocessedData
});

// Worker thread
self.onmessage = async function(e) {
 const result = await runInference(e.data.wasmModule, e.data.inputData);
 self.postMessage(result);
};

Measuring equipment and metrology. Vol. 86, No. 3, 2025 88

Table. Performance Results
Task JavaScript (ms) WASM (ms) Native (ms) WASM/JS Ratio

ResNet-50 Inference 2,340 890 680 2.63x
BERT Sentiment 1,850 720 520 2.57x

Matrix Mult
(1024x1024)

450 125 95 3.6x

Finally, to empirically validate WASM's

effectiveness, a thorough comparative performance
analysis is conducted between JavaScript, WASM, and
native code. The methodology involves running key ML
workloads–specifically, image classification (ResNet-
50), natural language processing (BERT), and large-
scale matrix multiplication–to provide clear, data-driven
evidence of the speedups gained by using WASM for
frontend AI/ML computations.

WASM demonstrates superior memory efficiency
compared to JavaScript due to its fundamental design. Its
linear memory model allows for predictable allocation,
which significantly reduces fragmentation and eliminates
the unpredictable latency spikes associated with
JavaScript's garbage collection. This is further enhanced
by the elimination of JavaScript object wrapping, a
process that adds unnecessary overhead. By working

with a more direct and contiguous memory layout,
WASM improves the spatial locality for numerical data.
This results in better cache efficiency, as the CPU can
fetch and process data more quickly, a critical advantage
for computationally intensive ML tasks (Table 1).

A computer vision application for real-time object
detection highlights WASM's capabilities. By
implementing a WASMObjectDetector that handles
image preprocessing and inference on the client-side, the
application saw dramatic performance gains. The
processing time for each frame was reduced from 180ms
to just 45ms, enabling smooth, 60 FPS real-time
processing. This shift to client-side execution also led to
a significant 75% reduction in server costs, proving
WASM's value for both performance and economic
efficiency in demanding applications like computer
vision.

class WASMObjectDetector {
 constructor(wasmModule) {
 this.detector = new wasmModule.YOLODetector();
 }

 async detectObjects(imageData) {
 const tensorData = this.preprocessImage(imageData);
 const detections = this.detector.infer(tensorData);
 return this.postprocessDetections(detections);
 }
}

In another case study, a client-side text analysis
system showcased WASM's power in Natural
Language Processing (NLP). The system performs
tasks like sentiment analysis by processing text
directly in the browser. This approach completely
eliminated the need for server round-trips, which

drastically reduced latency from 200ms down to
35ms. A key advantage of this client-side pipeline is
enhanced privacy, as sensitive text is processed on the
user's device and never leaves the browser. This
demonstrates WASM's potential for creating fast,
private, and efficient NLP applications.

Deploying large ML models with WASM presents

the technical challenge of managing model files that are too
big for practical download. Several optimization solutions

exist to address this. Model quantization reduces file size by
lowering the precision of the model's numbers, for example
from FP32 to INT8. Another approach is model pruning,

class WASMNLPPipeline {
 async analyzeSentiment(text) {
 const tokens = this.tokenizer.encode(text);
 const embeddings = this.embeddingModel.forward(tokens);
 const sentiment = this.classificationModel.predict(embeddings);
 return sentiment;
 }
}

Measuring equipment and metrology. Vol. 86, No. 3, 2025 89

which further shrinks the model by eliminating redundant
or unnecessary parameters. Additionally, progressive model
loading with streaming compilation can be used, allowing

the application to start functioning before the entire model
has been downloaded, improving the user's perceived load
time.

A significant challenge is addressing the varying
levels of WASM support across different browsers. To
handle this, developers can implement feature detection
functions that programmatically check for essential

capabilities. These checks can verify support for basic
WASM, advanced features like SIMD instructions, and
multi-threading, ensuring the application adapts
gracefully.

Debugging and profiling WASM ML applications
require specialized tools to manage their complexity.
Developers can use Chrome DevTools, which offers
WASM debugging support complete with source maps,
allowing them to step through code written in languages
like C++ or Rust as if it were JavaScript. For
performance tuning, custom Performance Profilers are
used to track ML-specific metrics, helping to identify
computational bottlenecks within the model's execution.
Additionally, Memory Analyzers provide essential tools
for inspecting WASM's linear memory, which is crucial
for diagnosing memory-related issues and optimizing
data layout.

WASM‘s security model provides significant
guarantees making it a safe environment for running

complex code like AI/ML models within a browser The
foundation of this model is its sandboxing and isolation
which ensures that WASM code runs in a tightly controlled
environment separate from the host system This security is
upheld by several key features Memory Safety Built-in
bounds checking automatically prevents buffer overflows a
common security vulnerability Control Flow Integrity
WASM enforces a structured control flow which stops
malicious code from making arbitrary jumps to unintended
parts of the program API Restrictions WASM modules have
no default access to browser APIs they can only interact
with functionalities that are explicitly imported limiting
their potential for misuse.

Future directions for WASM AI/ML integration
focus on emerging technologies and new optimization

// Progressive model loading
async function loadModelProgressive(modelUrl) {
 const response = await fetch(modelUrl);
 const reader = response.body.getReader();

 let wasmModule = null;
 const decoder = new StreamingDecoder();

 while (true) {
 const { done, value } = await reader.read();
 if (done) break;

 const chunk = decoder.decode(value);
 if (chunk.isComplete) {
 wasmModule = await WebAssembly.instantiate(chunk.buffer);
 break;
 }
 }

 return wasmModule;
}

function checkWASMSupport() {
 const features = {
 basic: typeof WebAssembly === 'object',
 simd: WebAssembly.validate(new Uint8Array([0x00, 0x61, 0x73, 0x6d, 0x01, 0x00, 0x00, 0x00])),
 threads: typeof SharedArrayBuffer !== 'undefined'
 };

 return features;
}

Measuring equipment and metrology. Vol. 86, No. 3, 2025 90

opportunities, including direct GPU access through
WebGPU for parallel computations , broader runtime
support via the WASM System Interface (WASI), and
modular applications with the Component Model,
alongside optimizations like WASM-based automatic
differentiation for on-device training, dynamic just-in-
time compilation for models, and hardware acceleration
with specialized AI processors.

The industry impact of adopting WASM for
AI/ML is significant, driven by compelling performance
economics and a wide range of applications. Financially,
it offers a 60-80% reduction in server infrastructure costs
by offloading computation, eliminates continuous data
transmission to save on bandwidth, and provides linear
scalability as the user base grows. This technology
shows particular promise in key sectors, including edge
computing on IoT devices, processing privacy-sensitive
data in healthcare, real-time fraud detection in financial
services, and content generation for creative tools.

5. Conclusions

WASM represents a paradigm shift in frontend
AI/ML deployment, offering near-native performance
while maintaining web platform security and acces-
sibility. Our analysis demonstrates significant perfor-
mance improvements, with WASM implementations
achieving 2-4x speedups over JavaScript equivalents
while enabling new application architectures impossible
with traditional approaches.

The technology addresses critical limitations in
current web-based AI/ML systems, including
computational performance, privacy concerns, and
scalability challenges. As browser support continues to
mature and optimization techniques advance, WASM-
based AI/ML integration is positioned to become the
standard for intelligent web applications.

Future research directions include enhanced GPU
integration, standardized ML model formats for WASM,
and development of specialized debugging and profiling
tools. The convergence of WASM and AI technologies
promises to democratize access to powerful ML
capabilities while maintaining the open, accessible
nature of the web platform.

Conflict of Interest

The authors state that there are no financial other
potential conflicts regarding this work.

Gratitude

The authors are grateful for the support from the
Ministry of Education and Science of Ukraine (Project
No 0125U001883)

References
[1] A. Schmidt, L. Kovacs, “High-Performance AI in

Composable Web Architectures: A WebAssembly and
Micro-Frontend Approach”, in Proc. 2024 ACM
Symposium on High-Performance Parallel and
Distributed Computing (HPDC), Pisa, Italy, 2024, pp.
212-223.

[2] S. Chen, M. Rodriguez, “Facilitating Client-Side
Inference: Optimizing TensorFlow.js with WASM for
Micro-Frontend Applications”, IEEE Transactions on
Software Engineering, vol. 49, no. 5, 2023, pp. 1450-
1465.

[3] D. Novak, Y. Petrova, “Architectural Patterns for
Isolating AI Workloads in Micro-Frontends using
WebAssembly”, in Proc. 19th International Conference
on the Design of Reliable Communication Networks
(DRCN), Vilanova i la Geltru, Spain, 2023, pp. 1-8.

[4] B. Weber, H. Kim, “Memory-Safe and Efficient:
Running ONNX Models in Browser-Based Micro-
Frontends via WASM”, in Proc. 2022 IEEE International
Conference on Web Services (ICWS), Barcelona, Spain,
2022, pp. 331-338.

[5] K. Ivanova, T. Jansen, “Reducing Latency in Real-Time
AI Features: A Case Study of WASM Integration in a
Financial Services Micro-Frontend”, Journal of Web
Engineering, vol. 22, no. 4, 2023, pp. 641-660.

[6] R. Gupta, P. O'Connell, “Leveraging WebAssembly's
SIMD for Accelerated Computer Vision Tasks within an
Independent Frontend Module”, in Proc. European
Conference on Computer Vision (ECCV) Workshops,
Tel Aviv, Israel, 2022, pp. 112-125.

[7] M. Dubois, C. Moreau, “Dynamic Loading and
Execution of AI Models in Micro-Frontends using the
WASM Component Model”, in Proc. 2024 ACM
SIGPLAN International Conference on Compiler
Construction (CC), Edinburgh, UK, 2024, pp. 78-89.

[8] Y. Wang, J. Lee, S. Miller, “The Performance
Economics of Client-Side AI: A WASM vs. Server-Side
Cost Analysis for Micro-Frontend Architectures”, ACM
Transactions on Internet Technology, vol. 23, no. 1,
article no. 9, 2023, pp. 1-27.

[9] O. Zaytsev, F. Ricci, “WASI-NN: Enabling
Standardized, High-Performance Neural Network
Inference in Cross-Platform Micro-Frontend
Applications”, in Proc. 5th International Workshop on
WebAssembly (Wasm '22), Minneapolis, USA, 2022, pp.
34-42.

[10] E. Fischer, A. Kowalski, “A Framework for Securely
Integrating Untrusted AI Models as WASM-Powered
Micro-Frontends”, in Proc. 2023 IEEE Secure
Development Conference (SecDev), Atlanta, GA, USA,
2023, pp. 55-61.

[11] N. Patel, I. Borysenko, “Optimizing Natural Language
Processing Pipelines for the Browser Edge using
DistilBERT and WebAssembly”, in Proc. Annual
Conference of the North American Chapter of the
Association for Computational Linguistics (NAACL),
Toronto, Canada, 2022, pp. 2340-2351.

[12] C. Gonzalez, V. Schulz, “From Python to Production: A
Toolchain for Compiling Scikit-learn Models to WASM
for Micro-Frontend Deployment”, in Proc. 22nd Python

Measuring equipment and metrology. Vol. 86, No. 3, 2025 91

in Science Conference (SciPy), Austin, TX, USA, 2023,
pp. 104-111.

[13] L. Brandt, K. Sørensen, “Seamless User Experience:
Combining Lazy-Loading of Micro-Frontends with
Streaming Instantiation of WebAssembly AI Modules”,
IEEE Software, vol. 41, no. 2, 2024, pp. 30-37.

[14] T. Watanabe, S. Kumar, “Beyond JavaScript: Exploring
Rust and WebAssembly for Robust and Performant AI-
driven Web Components”, in Proc. 2022 International
Conference on Software Engineering (ICSE),
Companion Proceedings, Pittsburgh, PA, USA, 2022, pp.
189-191.

[15] G. Costa, M. Ferreira, “WebGPU and WebAssembly: The
Next Frontier for High-Performance 3D and AI Integration
in Composable Web Applications”, in Proc. 29th
International ACM Conference on 3D Web Technology
(Web3D), San Sebastian, Spain, 2024, pp. 1-10.

[16] O. Stepanov, H. Klym, “Features of the implementation
of micro-interfaces in information systems”, Advances in
Cyber-Physical Systems (ACPS), vol. 9, no. 1, 2024, pp.
54-60.

[17] O. Stepanov, H. Klym, “Methodology of implementation
of information system using micro interfaces to increase
the quality and speed of their development”, Computer
Systems and Networks (CSN), vol. 6, no. 2, 2024, pp.
222-231.

[18] M. Szymański, A. Nowak, “Improving Developer
Experience: A Toolchain for Debugging and Profiling
WebAssembly-based AI Components in Micro-Frontend
Systems”, in Proc. ACM/IEEE 4th International
Workshop on Software Engineering for Web-Based
Systems (SEW '24), Lisbon, Portugal, 2024, pp. 67-74.

[19] J. O’Malley, S. Chen, “Efficient State Management
Strategies Between JavaScript Shells and WASM-
Powered AI Micro-Frontends”, The Journal of Systems
and Software, vol. 205, article no. 111811, 2023.

[20] K. Berg, A. Lindholm, “The UX of Heavy Computation:
A Study on User-Perceived Performance in Web
Applications with WASM-based AI on Low-Power
Devices”, in Proc. of the 2023 ACM conference on
Designing Interactive Systems (DIS '23), Pittsburgh, PA,
USA, 2023, pp. 450-462.

[21] C. Diaz, M. Laurent, “The Impact of Post-Training
Quantization on Inference Speed and Accuracy for
WASM-Deployed Neural Networks”, IEEE Transactions
on Emerging Topics in Computing, vol. 11, no. 3, 2023,
pp. 601-612.

[22] F. Moreau, E. Bianchi, “A Hybrid Execution Model for
Web-Based AI: Orchestrating Client-Side WASM and
Server-Side GPU Inference in Micro-Frontends”, in
Proc. The Web Conference (WWW '24), Singapore,
Singapore, 2024, pp. 1123-1134.

