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In this paper, there are proposed two multi-class predictive models for estimating the
resurgence probability of ten infectious diseases under epidemic surveillance in Senegal.
The first model is a Multiple Binary Random Forest (MBRF), which utilizes the ranger
function with Gini criterion and allows to separately predict each of the ten diseases
while taking account of their interdependencies. The second model is a Multi-Output
Decision Tree (MODT), which introduces an inertia criterion (calculated with Chi-square
distance) as the node impurity measure and allows to simultaneously predict all of ten
diseases. Data come from the global disease surveillance database of the Ministry of
Health, and contain information, on 68 698 instances, related to disease’s, district’s as well
as patient’s characteristics. The results showed that, during the study period (January
2018 to November 2022), these ten pathologies recorded an average resurgence probability
of 12.2%, except for Poliomyelitis, which had a lower score estimated at 2.4%, and Covid-
19 which showed a fairly high resurgence rate hovering 60%. Compared to standard
algorithms such as: multi-class random forests (MCRF) and multinomial logistic regression
(MLR), our two models provided better performance. For example, for F1-score, we have:
MBRF (0.9999), MODT (0.8572), MCRF (0.8451), MLR (0.8211).

Keywords: predictive models; multi-class models; resurgence probability; infectious dis-
eases.
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1. Introduction

In recent decades we have witnessed major changes in our global environment: human behaviors and
activities, climate change, environmental modifications, pathogens’ evolution, etc. This poses a real
public health concern, as many infectious diseases have emerged or reappeared due to the disruption of
ecosystems. For instance, the spread of infectious diseases, such as those transmitted by tiger mosquito
or ticks, is increasing worldwide. One can also note a resurgence of zoonoses in many regions of the
globe.

To address this situation, the WHO (World Health Organization) has initiated a strategic plan to
combat these emerging or re-emerging infections by reinforcing surveillance, alert and response, applied
research, prevention and control, and strengthening public health structures particularly in developing
countries. In Senegal, health authorities have adopted the Integrated Disease Strategy and Response
(IDSR), as have done many other country members of the WHO African Region. This strategy aims at
improving disease surveillance and strengthening response capacity to face epidemics and other health
emergencies. In addition to the IDSR program, there is a network named 4S (Syndromic Sentinel
Surveillance Network in Senegal), which has been set up in 2012 thanks to the collaboration between
the Ministry of Health and the Pasteur Institute of Dakar.
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A large number of diseases are included in the IDSR surveillance program, but in this work, we focus
on ten of them, whose monitoring is particularly crucial for health authorities. Indeed, these latter
are potentially epidemic infectious diseases and belong to the priority diseases for the national health
system. Some of them are emerging and others, which were considered as eradicated a few decades
ago, are reappeared. These ten pathologies are: Covid-19, Measles, Poliomyelitis (PFA), Dengue
Fever, Meningitis, Rift Valley Fever (Rift), Crimean Congo Hemorrhagic Fever (CCHF), Chikungunya
(CHIK), West Nile Fever (WN) and Yellow Fever (YF).

Predictive models allow the forecast of epidemic trends before they occur, facilitating thus antic-
ipation of health systems for early and effective response. To build high-performance models, many
researchers rely on a machine learning approach. For example, [1] developed an LSTM to predict
dengue cases in Brazil from climatic and spatial variables and identified the most important climatic
predictors using SHAP method. While [2] provided a systematic review of several machine learning
algorithms, and showed the possibility of combining them in order to obtain accurate forecasts of the
incidence and trends of many infectious diseases.

Our goal in this paper is to develop two machine learning models for the resurgence prediction of the
ten above mentioned infectious diseases. To this end, we will use a multi-label classification approach,
that presents challenges in terms of accuracy and efficiency as the number of classes to be predicted is
large; see [3]. When there are several tasks to learn, [4] suggest learning them simultaneously rather
than separately if the tasks are correlated; improving thus predictive performance. Also, [5] proposes
a multi-output random forest model, that generalizes the tree induction algorithm of [6] and allows
learning simultaneously multiple classification and regression tasks. This model is based on an impurity
measure defined as a combination of Shannon and differential entropies.

Whenever there are multiple quantitative output variables which are covariant, multivariate regres-
sion trees studied in [7]| generally provide good predictions. [8] applied this strategy to produce multi-
variate regression trees and solve classification problems for geographic and ecological data. Also, [9]
utilized multivariate regression trees to build a random forest model with multiple responses. While [10]
applied classification trees to analyze multiple binary responses. The common feature for all these
models is that they employ an impurity measure based on covariance-weighted entropy or least square
distance, which requires to determine the covariance structure of the output variables and then to
ultimately work with quantitative data.

In this paper, we propose two predictive multi-output models that can deal directly with qualitative
data and ignore the covariance structure required in the calculation of the impurity measure in the
above models. The first model is a Multiple Binary Random Forest (MBRF') algorithm, which utilizes
the ranger function with Gini criterion and allows to separately predict each class while taking account
of possible interdependencies. The second model is a Multi-Output Decision Tree (MODT) algorithm,
which introduces an inertia criterion, inspired from Multiple Correspondence Analysis technique, as
the node impurity measure and allows to jointly predict the occurrence of all ten diseases. These two
models enable us to estimate resurgence probabilities for each of the ten targeted diseases, by taking
the proportion of positives predictions of each disease in the test sample.

The paper is structured as follows: Section 2 describes the methodology, Section 3 presents and
discusses the results, while Section 4 concludes the work.

2. Methodology

2.1. Data

The data were extracted from the Senegalese global disease surveillance database and concern confirmed
cases (patients) of ten infectious diseases, recorded during the period from January 2018 to November
2022. The studied database contains 68,698 instances or observations. Each instance is associated
with a patient from a given district and provides: the patient’s age and sex, the diagnosed disease and
its characteristics, as well as characteristics of the health district such as: environmental and climatic

conditions, human behavior, and socioeconomic living conditions. The study variables are presented
in Table 1.
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Table 1. Definition of analysis variables.
Variables Description Nature Type Modalities
Covid-19, Measles, PFA,
Disease Type of disease Qualitative | Nominal Dengue, Meningitis, Rift,
CCHF, CHIK, WN, YF
ModTrans Mode of transmission Qualitative Binary Direct, Indirect
Vaccine Existence of a vaccine Qualitative Binary Yes, No
VitesProp Speed of propagation Qualitative Ordinal Fast, Moderate, Slow
Lack of hygiene& sanitation,
FactEnv Environmental factors | Qualitative | Nominal Pollution,
Presence of enclosures/parks
Promiscuity,
FactCompHum | Human behavior factors | Qualitative | Nominal High population density,
Social interrelations
Poverty,
FactSocioEco Socio-economic factors | Qualitative | Nominal | Existence of public meeting places,
Lack of access to healthcare
Temperature,
FactClimat Climatic factors Qualitative | Nominal Wind and Dust,
Rain, Humidity
Rerudes Recrudescence period Qualitative | Nominal Winter season, Dry season
[0, 20[ — [20, 40[
Grpage Age of patients Qualitative | categorical - [40, 60[ — [60, 80|
- [80, 106]
Gender Patient’s gender Qualitative | Nominal Man, Woman
2.2. Models

The aim of this paper is to simultaneously predict the resurgence of ten infectious diseases based on
spread risk factors or variables defined in Table 1. We can consider this problem as a multi-label
classification problem, where the output variable has more than two labels or classes. To solve such
a problem, we can reduce it to a multi-output problem, i.e. where the output is a vector rather than
a single element. Thus, depending on whether the output components are correlated or not, we may
use either algorithms that make separate predictions with individual outputs or algorithms that make
simultaneous predictions for all components of the targeted variable.

A classic and simple approach to multi-label prediction problems is the “Binary Relevance” one.
But, its drawback is that it does not take into account the dependencies between labels. To overcome
this difficulty, some approaches such as: Classifier Chains; see, e.g., [11] and Classifier Treillis; see,
e.g., [12] have been proposed. But, the disadvantage of the latter methods is that they impose a
dependency structure between labels, and hence learning will only be possible with dependencies that
respect this structure.

Generally, infectious diseases share common spread risk factors; this can lead to interdependencies
between them. For example, a recent paper [13] showed that the presence of enclosures or parks is
a risk factor for spread of Crimean-Congo, Rift Valley Fever and Dengue. Similarly, temperature
variations are a common risk factor for spread of Covid-19, Meningitis and Measles. Thus, resurgence
of one of these diseases may increase the likelihood resurgence or emergence of others, particularly
in the Senegalese context, where various propagation risk factors are present in health districts such
as: winter season, wind and dust, promiscuity, humidity, temperature variations, gatherings in public
places, etc.

The two predictive models we propose in this work are described below. Their advantage is that they
take account of interdependencies between labels, without fixing any particular dependency structure.
Moreover, they do not require the determination of the covariance structure of the labels and are well
suited to qualitative data.
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Multiple Binary Random Forest (MBRF): It consists of three steps:

— First, transform the multi-label classification problem into several binary classification problems
where each label (disease) is considered separately as a binary variable.

— Second, to take account of interdependencies between diseases in each binary model, we add the
other labels (or diseases) that are not predicted as predictors.

— Third, group all the individual outputs of the binary problems to obtain the predictions of all ten
diseases.

The binary random forest uses the ranger function with Gini criterion. Hyper parameters such as:
mitry and min.node.size, are selected via the GridSearchC'V method, which provides the best values of
these hyper parameters using a cross-validation procedure. mtry is the number of variables randomly
selected for node splitting, and min.node.size is the minimum size of a terminal node.

Multi-output decision tree (MODT): It is an adaptation of the tree induction algorithm
proposed by [5]. Instead of entropy, our algorithm utilizes an inertia criterion as the impurity measure.
The information gain is then replaced by the inertia gain, which is calculated via Chi-square distance
similarly to the calculation of inertia in the Multiple Correspondence Analysis technique. Suppose
that the output variable Y has K modalities (here K = 10) and that the frequency of a modality j,
j=1,...,K in anode t is denoted p;t. Then the inertia of node ¢ is given by:

10) = Y (i), 0

€L
where n; is the node size, gt = (p1¢,. .., pit) is the center of gravity of node ¢, i represents an instance
(or individual) in node ¢, and the Chi-square distance is
1
d*(i, g1) = Z —(yi; — pjr)°, (2)
= Pyt

where y;; = 1 if individual 4 takes modality j, and 0 elsewhere. The inertia /() maybe interpreted as
a measure of the homogeneity of node t.

2.3. Performance metrics

To assess the prediction quality of our two models, we use appropriate performance metrics, including:

accuracy, kappa coefficient, precision, recall (sensitivity), and Fl-score. Those metrics are calculated

from the confusion matrix which comprises the following four categories:

e True Positive (TP): Number of instances predicted as positive for a disease, when they are actually
positive for that disease.

e True Negative (TN): Number of instances predicted as negative for a disease, when they are actually
negative for that disease.

e False Positive (FP): Number of instances predicted as positive for a disease, when they are actually
negative for that disease.

e False Negative (FN): Number of instances predicted as negative for a disease, when they are actually
positive for that disease.

Accuracy: Measures the probability of correct predictions among all predictions. It is calculated by:
Accuracy = (TP + TN)/(TP + TN + FP + FN). (3)

Kappa coefficient: Measures the agreement between the model predictions and the actual classes,
taking into account the possibility of random agreement. It is calculated by:

Kappa = (P, — P)/(1 — Pe), (4)

where P, is the observed accuracy and P. is the accuracy expected by chance.
Precision: Measures the probability of true positives among all instances predicted as positive. It is
calculated by:

Precision = TP /(TP + FP). (5)
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Recall/Sensitivity: Evaluates the model’s ability to correctly identify all real positive instances. It is
given by:
Recall = TP/(TP + FN). (6)
F1-Score: Is the harmonic mean of Precision and Recall, providing a synthetic measure of the overall
performance of the model that takes into account the balance between these two metrics. It is given
by:
F1-Score = 2 x (Precision * Recall/(Precision + Recall)). (7)

Since we deal with multi-class models, we must use an aggregation procedure to assess their perfor-
mance. Here, we choose the micro-averaging procedure as the data are unbalanced, because Covid-19
is over-represented in the database. This procedure consists of gathering all true positives, false posi-
tives, true negatives and false negatives, respectively, over the different classes, and then applying the
formula of the metric we wish to evaluate. For example, for the Precision, one has

K
Zi:l TPZ (8)
S (TP + FPy)

where TP; is the number of true positives, FP; the number of false positives in class i, and K is the
number of classes.

Precisionmicro =

3. Results and discussion

We split the database into two parts: a training

sample (90%) and a test sample (10%). To as-

sess interdependencies between the ten diseases,

we applied a Chi-square test to each couple of

value diseases; each disease is considered as binary

M. variable. The resulting p-value matrix of the

°%  test (see Figure 1) indicates the statistical sig-

oo nificance of the relationships between the dis-

eases. A low p-value (usually <= 0.05) suggests

a significant association, while a high p-value

(> 0.05) indicates no association between the
diseases.

DiseaseYF
DiseaseWWN
DiseaseRift

DiseasePFA
DiseaseMeningitis
DiseaseMeasles

DiseaseDengue

DiseaseCovid-19

DiseaseCHIK

DiseaseCCHF

is

it

The p-value matrix reveals that there are
interdependencies between certain diseases, in-
dicating that they are sharing common propa-
gation risk factors. For example, Covid-19 is
significantly related to almost all the other dis-
eases. While Measles, Dengue and Meningitis are significantly associated with each other. This hy-
pothesis of interdependency between the ten diseases justify our multi-output approach, and can lead
to performance improvement. Table 2 displays performances of our two models and compare them with
two standard models. The performance metrics were aggregated using micro-averaging procedure.

DiseaseCCHF
DiseaseCHIK
DiseaseCovid-19
DiseaseDengue
DiseaseMeasles
DiseasePFA
DiseaseRift
DiseaseWN
DiseaseYF

DiseaseMeningi

Figurel. P-values matrix for the Chi-square test of
associations between the ten infectious diseases.

Table 2. Performance comparison. Table 2 shows good predictive perfor-
Performance metrics | MODT | MCRF | MBRF | MLR | mance for all models, but our two pro-
Accuracy 0.9945 | 0.9943 | 0.9999 | 0.9191 posed models MODT and MBRF seem
Kappa 0.8952 | 0.8927 | 0.8264 | 0.7316 to outperform the two others. It is also
Precision 0.8327 | 0.8197 | 0.9999 | 0.7938 worth noting that the MBRF model out-
Recall 0.8736 | 0.8722 | 0.9999 | 0.8504 performs the others on all metrics. This
F1-Score 0.8572 | 0.8451 | 0.9999 | 0.8211

may be due to the fact that this model
takes better account of the dependencies between diseases by considering, for each predicted disease,
the other non-predicted diseases as predictors. To highlight the differences between the four models,
we make a ranking via their performance, see Figure 2. By visualizing the performance metrics, we
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can observe again that the multiple binary random forest (MBRF) exhibits the best performance,
followed by the multi-output decision tree (MODT) and the multi-class random forest (MCRF). The
multinomial logistic regression (MLR) shows less performance.

The previous observations may lead us to validate

our two proposed models, and use them to predict the Aecgracy eerormance
resurgence of each of the ten diseases. Table 3 dis-

plays the resurgence probabilities of the ten diseases N

for both models, obtained by taking the proportion Plecision

of positive predictions of each disease in the test sam- 090
ple. 0.85

From Table 3, we can say that without Covid-19,
these infectious diseases have an average resurgence
probability of 12.2% except for Poliomyelitis which
recorded a lower resurgence probability of 2.39%.
These results are in line with those of [14] who found
that, out of 24296 cases of fever, 11% were related
to arboviruses/hemorrhagic fevers. In addition, [14] found that during the study period, Senegal has
experienced a high incidence of infectious disease epidemics; some of which had already been eradicated
(Poliomyelitis, Measles), while others are emerging due to climate change and environmental modifi-
cation (Chikungunya, Rift Valley Fever, Crimean-Congo Hemorrhagic Fever, Covid-19). However, in
the presence of Covid-19, we noted that the resurgence probability decreases to around 5% for all the
other diseases. This could be explained by the fact that during the Covid-19 pandemic, surveillance
was much more focused on the latter, thus relegating other existing pathologies to the background;
see, e.g., [15,16]. Since Covid-19’s instances are over-represented in the database, another explanation
might be the fact that predictive models often favor the majority class.

Table 3. Probability of resurgence of the ten diseases obtained with MBRF and MODT models.

0.80

0.75
—&— FABM —@— ADMO FAMC —@— RLM ﬁ

Figure 2. Model ranking.

Infectious diseases MBREF MODT
With Covid-19 | Without Covid-19 | With Covid-19 | Without Covid-19

CCHF 0.052426993 0.1232745 0.051785046 0.13573521
CHIK 0.049948422 0.12202076 0.050535339 0.12694722
Covid-19 0.603948285 XXXXXXX 0.606208411 XXXXXXX
Dengue 0.050957858 0.12186089 0.050591703 0.12589665
Measles 0.033162584 0.08962416 0.036245018 0.09044603
Meningitis 0.047739217 0.13515262 0.047580506 0.11302989
PFA 0.009798079 0.02329153 0.009227454 0.02392803
Rift 0.050830319 0.12578174 0.049016127 0.13505944
WN 0.050863152 0.12742476 0.048928176 0.13036992
YF 0.050492523 0.13199979 0.049882221 0.11858761

4. Conclusion

In this article we presented two new machine learning models to predict the resurgence of ten potentially
epidemic infectious diseases under surveillance in Senegal. The first model MBRF (multiple binary
random forest) treats separately each disease, but takes account of its interdependence with the others.
The second model MODT (multi-output decision tree) introduces a specific impurity measure based
on inertia, and allows to jointly predict all of ten diseases. These two models enable us to estimate the
resurgence probability of each disease, which can be interpreted as the incidence rate of that disease,
and thus allows to assess frequency and speed of the distribution of that disease over a given period.
One limitation of these models is that they do not take into account the temporal evolution of the
data. As data were collected weekly, an interesting perspective would be to consider time series or
LSTM (Long Short-Term Memory) models to improve predictions. Also, not all factors that are likely
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to influence the spread of these diseases have been taken into consideration; those might be: climate
change, pathogens evolution, population movements (due to crises, wars, flooding, etc.), air traffic.
Thus, a promising prospect would be to integrate more spread risk factors and explore deep learning
or Bayesian approaches.
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MNporHo3ysaHHsA NOBTOPHOroO crnanaxy Aecatn iHdekuinHnx xsopob,
wo nepedbysatoTb nig Harnsigom y CeHerani

Hpao A.', Cex K. T.!, JTion B.2

L Vuisepcumem Aaiyna Zliona, a/c 30, Bamberi, Cenezan
2 Vnpasainma npodiraxmuruy, Minicmepcmeo oxoponu 30opos’s, daxap, Cenezan

VY it poboTi 3aIIPOMOHOBAHO JIBI TPOTHOCTUYHI MOJIEI JIJIsT OIIHKK HMOBIPHOCTI TIOBTOP-
HOro crajaxy (pesypreuuil) gecaru iHdeKifinux XBopod, 1mo nepebyBaroTh i emigemio-
soriuanm HarasaoMm y Cenerai. [lepima Mmomens — 1€ MHOXKWHHII OiHAPHMWIA BUIIATKOBHUI
aic (MBRF), sxkwuii BukopucroBye QyHKIIi0 ranger i3 kpurepiem J>Kuni Ta 103B0JIg€ OK-
PeMO TPOTHO3YBATHU KOXKHY 3 JECATH XBOPOO, BpaxoByioun IXHi B3aeMozaJiexkHocTi. /Ipyra
MO/JIeJTb — Ile MyJIbTH-BuXigHe Jepeso pimens (MODT), sike BipoBaizKye KpuTepiit inepriii
(pospaxoBaHmil 3a JOIOMOrOI0 BijcTani Xi-KBajapaT) sK Mipy YHCTOTH By3Ja i J03BOJISIE
OJIHOYACHO IIPOTHO3YBATHU BCi JecsaTh xBopoO. Jlawi orpumani 3 riobasibHOI 6a3u JaHUX
emiemiosiorigaoro Harsay MiHicTepcTBa OXOPOHU 310POB’S Ta MICTITh iH(MOPMAIIIIO TIPO
68 698 BUMAIKiB, IO CTOCYIOTHCSA XapPaKTEPUCTUK 3aXBOPIOBAHB, PAHOHIB, & TAKOXK IMaIli€H-
riB. Pesynbprarn mokaszasm, mo nporsrom nepiogy gocaimkenns (ciuens 2018 p. — samcro-
naz 2022 p.) ui gecsarsb maTostoriit 3adikcyBau cepeiHIo HMOBIPHICT IOBTOPHOTO CIIAJIAXY
Ha pieHi 12.2%, 38 BUHATKOM MOJIOMIENITY, MTOKA3HAK SKOTO OYB HIKYIMM 1 cTaHOBHUE 2.4%,
ta COVID-19, sikuit TpoIeMOHCTPYBAB JIOCUTHh BUCOKHUI PiBEHb pE3ypreHIiii — OJU3bKO
60%. IlopiBHSHO 31 CTAHJAPTHUME AJTOPUTMAMH, TAKMMHU K 0AraTOKJIACOBI BHIAIKOBI
gicu (MCRF) Ta myabrusoMianbha sorictuana perpecis (MLR), nsi 3anpononosasi mo-
Jemi 3abe3nednsin Kpaity edekTuBHicTh. Hanpukia, 3a mokazuukoMm F1-score orpumano

raki pesynprat: MBRF (0.9999), MODT (0.8572), MCRF (0.8451), MLR (0.8211).

Knw4osi cnosa: npozrocmuyuni modeni; 6a2amomimrosi moodeni; UMoSIPHICTS NOSMOp-
H020 CNAAATY; THPEKUITHT 3aTE0PI0CAHHA.
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