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Toxoplasmosis is one of the most prevalent infectious diseases in the world due to its
harmful effects on both humans and animals. In this study, we present the dynamics of
Toxoplasmosis in cat and mouse populations. We implement continuous vaccination for
cats, horizontal transmission in both populations, and include vertical (congenital) trans-
mission only in the cat population. Additionally, we consider the impact of oocysts of
the parasite Toxoplasma gondii, which is responsible for causing the Toxoplasmosis infec-
tion. The paper offers a comprehensive analysis of positivity, boundedness, and stability
of equilibrium points. Furthermore, we propose a controlled system accompanied by two
suggested control strategies that aim to minimize the infected population while optimizing
costs. To support the analytical findings, a numerical example is provided.
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1. Introduction

The protozoan parasite Toxoplasma gondii is the cause of toxoplasmosis, which affects a significant
proportion of the global population. About 11% of people in the United States aged six years or older
are thought to have been infected, and in certain parts of the world, the infection rate is more than
60%. Because such environmental conditions enhance the survival of the parasite’s oocysts, the preva-
lence is noticeably higher in hot, humid climates and lower elevations. There are three major routes
of transmission: foodborne, zoonotic (animal-to-human), and congenital (mother-to-child). Pregnant
women and people with compromised immunity may be at risk, even though it is frequently asymp-
tomatic in those with robust immune systems. There are several ways that toxoplasmosis can spread,
such as eating raw meat or shellfish, drinking tainted water or food, coming into contact with cat
excrement, pregnant women can transfer the disease to their unborn child, and in rare cases, organ
donation or blood transfusion can also transmit the disease. Many people with toxoplasmosis have
no symptoms at all, and symptoms might vary greatly. Severe instances of toxoplasmosis can cause
damage to the brain or eyes, while mild ones may just cause muscle aches and lymph node swelling.
Ocular toxoplasmosis may require treatment by an ophthalmologist, and infected neonates may show
signs later in life, including potentially fatal brain or eye damage (see [1]).

Worldwide, Toxoplasma gondii is a protozoan parasite that is often found in domestic and wild
animals, especially in cats [2,3]. Most cats that have Toxoplasma gondii do not display any symptoms,
however, cats with compromised immune systems may display symptoms that affect multiple organs [4].
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According to Hartmann et al. (2013), cats only shed these environmentally resistant oocysts once in
their lifetime, but infected cats may still pose a risk to people after that. According to [5,6], Toxoplasma
gondii may infect a wide variety of warm-blooded animals, with significant seroprevalence rates seen
in South American cats.

The diagram 1 given in [7] shows the life cycle of the Toxoplasma gondii in the environment.

Figure 1. Life Cycle of Toxoplasma gondii.

The Felidae family, especially domestic cats,
represents the primary group of definitive hosts
for Toxoplasma gondii. Cats excrete unsporu-
lated oocysts in their feces, a process that can
produce a significant amount of oocysts and
usually takes 1–3 weeks. The sporulation of
these oocysts in the environment takes one to
five days. After consuming soil, water, or plant
material contaminated with these sporulated
oocysts, intermediate hosts like birds and rats
become infected. After ingestion, oocysts re-
lease sporozoites that differentiate into tachy-
zoites, which settle in muscle and neural tissue
and mature into tissue cyst bradyzoites. Both consuming intermediate hosts that contain tissue cysts
or swallowing sporulated oocysts directly can cause infection in cats [1]. Furthermore, wild game and
animals raised for human consumption can become infected with tissue cysts by ingesting sporulated
oocysts in the environment. Toxoplasma gondii can infect humans through various means, including
eating raw meat from animals with tissue cysts, consuming food or drink contaminated with cat excre-
ment or environmental samples (such as soil contaminated with feces), cleaning a pet cat’s litter box,
organ transplantation or blood transfusion, and transmission from mother to fetus transplacentally
(congenital transmission) [1, 7, 8].

Once inside the human host, the parasites form tissue cysts, which are commonly found in the
brain, eyes, heart, and skeletal muscle. These cysts can persist throughout the host’s life. Although
stained biopsy specimens may reveal tissue cysts, serology is typically used for diagnosis. In cases of
congenital infections, molecular methods like polymerase chain reaction (PCR) can be employed to
detect Toxoplasma gondii DNA in amniotic fluid for diagnostic purposes [1].

A mathematical framework called the compartmental model, initiated by Kermack et al. [9], pro-
vides insights into the dynamics of infectious diseases such as mouse typhoid [10]. In compartmental
epidemiological models, the population is divided into three separate groups: the susceptible (S) class,
the infected (I) class, and the removed (R) class. When susceptible individuals come into contact with
an infected individual, they become infected. Individuals in the infected class may eventually recover
from the illness and transition to the removed class, where they are assumed to remain immune to it.
This particular model is referred to as the “SIR” model. Mathematical epidemiological models have
contributed significantly to understanding diseases caused by viruses and parasites [11–14]. Several
studies [15, 16] have all used these models to study the dynamics of toxoplasmosis in specific popu-
lations, such as humans, cats, and mice. To reduce the spread of Toxoplasma gondii to people and
other animals, several studies have particularly examined the effects of cat vaccination [16,17]. A num-
ber of studies [16, 18] have explicitly examined the effect of immunizing cats as a strategy to reduce
Toxoplasma gondii transmission to humans and other animals. However, developing a vaccine against
toxoplasmosis is still a top priority [19]. This work presents a mathematical model of Toxoplasma
gondii transmission involving mice and oocysts, in which cats become infected by coming into contact
with oocysts.

One key characteristic of the life cycle of oocysts is that they can be transmitted within populations
via two routes: horizontal transmission between cats and mice, and vertical transmission from cats
to their neonatal offspring [8, 20]. If horizontal transmission incurred no costs, it would evolve to
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always increase rates. While the mouse population is divided into susceptible and infectious classes,
with the recovered class excluded due to the parasite’s systemic spread in infected mice, the model
separates the cat population into susceptible, infectious, and vaccinated/recovered sub-populations.
Toxoplasma gondii oocysts are the primary environmental source of infection, and the mathematical
model explores the dynamics of disease transmission. Animals can get the disease in a number of
ways, such as by consuming contaminated meat, ingesting feces from recently infected cats, or through
vertical transmission from mother to fetus. According to several studies [17,18], cats act as important
reservoirs for the disease.

2. Toxoplasmosis model

In the following sections, we develop a mathematical model to describe the spreading dynamics of tox-
oplasmosis within cat population and mouse population. This model incorporates a constant vaccina-
tion program for cats [16–18] and includes the oocyst population, as these are primarily responsible for
maintaining Toxoplasma gondii in the environment [21]. This inclusion is critical since cats are the only
known excretors of Toxoplasma gondii oocysts [17,21]. The model accounts for direct contact between
cats and environmental oocysts. Environmental contamination by oocysts is well-documented [22], and
the likelihood of acquiring Toxoplasma gondii infection is directly related to the quantity of oocysts
present in the environment [23].

Infections generally originate from two sources: tissue cysts in prey and environmental oocysts [22].
However, prey infection ultimately traces back to oocyst shedding by cats. Our model is based on the
premise that infection risk is proportional to the environmental oocyst load, which is influenced by the
number of infected cats in preceding weeks [17]. This mathematical model employs a system of ordinary
differential equations and includes parameters related to vaccination rates and oocyst survival times.
We assume lifelong immunity post-recovery, as cats, while they can be reinfected and shed oocysts
again, tend to shed significantly fewer oocysts in subsequent episodes [1, 2]. Given that the vaccine
is assumed to provide complete immunity, we consolidate vaccinated and recovered cats into a single
compartment.

The model also considers vertical transmission within the cat population, supported by several
studies [24, 25] and evidence of lactational transmission of Toxoplasma gondii [25]. A natural expo-
nential decay is applied to the oocysts. While we do not include a subpopulation of exposed oocysts
in this model, future work may incorporate this aspect, as oocysts become infective only after 24 to
48 hours post-shedding. Sporulated oocysts can survive for extended periods under typical environ-
mental conditions [26].

The model proposed is presented by the following ordinary differential equations system

dS(t)

dt
= µVR(t)− β S(t)O(t)− γS(t) + µ tv2I(t),

dI(t)

dt
= β S(t)O(t)− α I(t) + µ tv1I(t),

dVR(t)

dt
= α I(t) + γ S(t)− µVR(t),

dO(t)

dt
= k I(t)− µ0O(t),

dSm(t)

dt
= (b− µm)Sm − βmSm(t)O(t),

dIm(t)

dt
= (b− µm) Im + βmSm(t)O(t).

(1)

The total cat population is denoted N(t) and it is classified into three disjoint sub-populations: suscep-
tible cats S(t), infected cats I(t), and vaccinated/recovered cats VR(t). The mice population Nm(t) is
classified in two different sub-populations: susceptible mice Sm(t) and infectious mice Im(t). Assuming
the rate of births is the same as the natural death rate (µ), then the population of cats stays constant
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(Ṅ(t) = 0). However, susceptible cats or mice become infected after direct connection with oocysts at
the two rates (β) and (βm), respectively. It is assumed that oocysts become infective immediately after
being shed by cats. Additionally, there is an oocyst population O(t) in the environment. The parame-
ter k > 0 is the rate of appearance of new oocysts in the environment per infected cat. Susceptible cats
move to the vaccinated sub-population VR(t) at rate (γ), while infectious cats move to VR(t) at rate
(α). The fluctuation in the oocysts number O(t) at time t is in relation with the amount of infectious
cats I(t). Note also that (µ0) is oocysts death rate. In the system model (1) the two parameters (tv1)
and (tv2) denote vertical transmission rates, which are crucial for understanding the persistence of
toxoplasmosis in cat populations. Vertical transmission refers to the transfer of infection from mother
to offspring, either during pregnancy or through breastfeeding. The parameter (tv1) represents the rate
at which infected mother cats transmit the infection to their kittens. This mode of transmission helps
sustain the prevalence of Toxoplasma gondii within cat populations, even in the absence of environ-
mental oocysts [27, 28]. The parameter tv2 accounts for the offspring of infected mothers being born
susceptible but not immediately infected, highlighting the potential for rapid re-infection cycles due to
close contact with the mother or contaminated environments [29]. Incorporating (tv1) and (tv2) into
the model allows for a more accurate simulation of disease dynamics and aids in evaluating effective
control strategies.

Furthermore, we assume that the total populations of cats and mice are scaled: N(t) = S(t) +
I(t) + VR(t) = 1, and Nm(t) = Sm(t) + Im(t) respectively, without loss of generality. Note that the
variables related to births (b) and deaths (µm) in the mouse population disappear due to the scaling
of the population. Since Im(t) = 1− Sm(t) and VR(t) = 1− S(t)− I(t) taking into account the scaled
populations we can reduce the model (1) to a simpler one as follows

dS(t)

dt
= µ− β S(t)O(t)− (µ+ γ)S(t) − µ I(t) + µ tv2I(t),

dI(t)

dt
= β S(t)O(t)− α I(t) + µ tv1I(t),

dO(t)

dt
= k I(t)− µ0O(t),

dSm(t)

dt
= −βmSm(t)O(t),

(2)

with initial conditions

S(0) > 0, I(0) > 0, O(0) > 0, Sm(0) > 0. (3)

This paper aims to analyze the dynamics of toxoplasmosis. We take in count two types of transmissions
(horizontal and vertical). By deriving the basic reproduction number, that is expressed by the system
parameters, we prove sufficient conditions for the stability of two equilibrium points of the system.
Furthermore, we present a description of optimal control to minimize the numbers of infected cats and
oocysts in the environment.

The rest of this paper is organized in the following form. In Section 3, we determine the equilibrium
values of the model (2), and we show the existence, positivity and boundlessness of system solution
to guarantee that our system is mathematically and biologically well-posed. The characterization of
optimal controls is investigated in Section 4. In Section 5, we illustrate our analytical results with
numerical simulations. In the end, we finish the paper with conclusion and future directions,

dS

dt
= µ (1− S − I)− β S O − γ S + µ tv2I,

dI

dt
= β S O − αI + µ tv1 I,

dVR
dt

= α I + γ S − µ (1− S − I).
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3. Basic mathematical analysis

The proposed model below describes the dynamics of a biological population, therefore, the solutions
of the system must be nonnegative and bounded.

We can also verify the existence and uniqueness of the solutions of the system. Thus, we can rewrite
the system (2) by

ψ(t) = A(X(t)) +B(X(t)),

where

X(t) =









S(t)
I(t)
O(t)
Sm(t)









, Ψ(t) =











dS(t)
dt

dI(t)
dt

dO(t)
dt

dSm(t)
dt











,

A =









−µ+ γ µ+ µtv2 0 0
0 −α+ µtv1 0 0
0 k −µ 0
0 0 0 0









, B(X(t)) =









µ− β S(t)O(t)
β S(t)O(t)

0
βmSm(t)O(t)









.

There exists a Lipschtiz constant L such that ‖B(X1(t)) − B(X2(t))‖ 6 L‖X1(t) − X2(t)‖, then
‖ψ(X1)− ψ(X2)‖ 6W‖X1(t)−X2(t)‖, where W = max(L, ‖A‖) <∞. This shows that the function
ψ is uniformly Lipschitz continuous, and with the restrictions on S(t) > 0, I(t) > 0, O(t) > 0 and
Sm(t) > 0, we prove the existence of a solution for the system (2) [30].

3.1. Positivity

Since the populations must remain nonnegative at all times, the following theorem shows that every
solution of (2), with nonnegative initial values (3) will remain in R

4
+.

Theorem 1. For any initial conditions (3), the solutions S(t), I(t), O(t), Sm(t) of system (2) are
positive for all t > 0.

Proof. We assume that the initial values (S(0), I(0), O(0), Sm(0)) of system (2) are in R
4
+. We prove

that system (2) is a non-negative dynamical system using Proposition 2.1 in [31]. Then, we have

dS

dt

∣

∣

∣

∣

S=0

= µ (1−I(t))+µ tv2I(t) > 0,
dI

dt

∣

∣

∣

∣

I=0

= β S(t)O(t) > 0,
dO

dt

∣

∣

∣

∣

O=0

= k I(t) > 0,
dSm
dt

∣

∣

∣

∣

Sm=0

= 0.

Then, R
4
+ is an invariant set. Therefore, if the initial values belong to the nonnegative cone, every

solution will remain in R
4
+. That is complete the proof. �

3.2. Boundedness of solutions

The following theorem presents the boundedness of solution. In order to show this, we consider the
following set:

Ω =

{

(S, I,O, Sm) ∈ R
4
+ : 0 6 S 6

µ(1 + tv2)

µ+ γ
, 0 6 I 6

k β µ (1 + tv1) + µ tv2µ0(µ+ γ)

αµ0(µ+ γ)
,

0 6 O 6
k

µ0
, I + S 6 1, Im + Sm 6 1

}

. (4)

Theorem 2. The set Ω is positively invariant with respect to system (2), with the initial condi-
tions (3).

Proof. Taking the third equation of system (2)

dO(t)

dt
= k I(t)− µ0O(t),

and since I(t) 6 1, then

dO(t)

dt
6 k − µ0O(t).
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Therefore, according to Birkhoff and Rota’s [30] differential inequality, we get

O(t) 6 e−µ0t

(

k

µ0
+O(0)(eµ0t − 1)

)

, ∀t > 0.

Then, since O(0) 6 k
µ0

we have O(t) 6 k
µ0

for all t > 0. The first equation gives

dS(t)

dt
= −β S(t)O(t)− (µ+ γ)S(t) + µ (1− (1− tv2) I(t))

6 µ− (µ + γ)S(t) + µ tv2I(t),

and since I(t) 6 1, then
dS(t)

dt
6 µ (1 + tv2)− (µ+ γ)S(t),

which implies

S(t) 6 e−(µ+γ)t S(0) +
µ (1 + tv2)

µ+ γ

(

1− e−(µ+γ) t
)

, ∀t > 0,

with S(0) the initial condition. Letting t→ ∞, we get

lim
t→∞

S(t) 6
µ (1 + tv2)

µ+ γ
.

Then, from the second equation
dI(t)

dt
= β S(t)O(t)− α I(t) + µ tv1 I(t)

6
k β µ (1 + tv2)

µ0(µ+ γ)
+ µ tv1 I(t),

and since I(t) 6 1, then

dI(t)

dt
6
kβµ(1 + tv1)

µ0(µ + γ)
+ µ tv2 − α I(t),

wish imply

I(t) 6 e−αtI(0) +
k β µ (1 + tv1) + µ tv2µ0(µ+ γ)

αµ0(µ + γ)

(

1− e−α t
)

, ∀t > 0

with I(0) the initial condition. Letting t→ ∞, we get

lim
t→∞

I(t) 6
k β µ (1 + tv1) + µ tv2µ0(µ + γ)

αµ0(µ+ γ)
.

Therefore, we can focus on the system (2) in the region Ω defined by (4). �

Remark 1. According to Theorems 1 and 2, we confirm that the problem is mathematically and
biologically well defined.

3.3. Basic reproduction number

Using the next-generation matrix method developed by Van den Driessche and Watmough [32], we
can express the basic reproduction number of the system. Here, the infected compartment is I. The
outflow term V and the new-infection terms F are as follows

F =

[

βS(t)O(t)
0

]

, V =

[

α I(t)− µ tv1I(t)
−k I(t) + µ0O(t)

]

.

The Jacobian matrix of F and V are expressed as follows:

F =

[

0 βS(t)
0 0

]

, V =

[

α− µtv1 0
−k µ0

]

.

Then the matrix F × V−1 is given as follow:

F × V−1 =

[

β k S(t)
µ0(α−µ tv1 )

β S(t)
µ0

0 0

]

.
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The linearized form of the matrix F × V−1 at the equilibrium E0 is expressed as follows,

(F × V−1)(E0) =

[

β k µ
µ0(µ+γ)(α−µ tv1 )

β µS(t)
µ0(µ+γ)

0 0

]

.

The dominant eigenvalue of F × V−1(E0) represents the basic reproduction numbers, and it is given
by R0 = ρ(F × V−1) (with ρ the spectral radius of F × V−1(E0)). Then,

R0 =
β k µ

µ0(µ+ γ)(α − µ tv1)
.

Remark 2. For a deterministic system, the reproduction number has a critical signification. It is the
expected amount of secondary cases generated by one infective individual introduced into a population
constituted totally by susceptible individuals in an average period of time. It determines the eradication
or continuance of an epidemic.

3.4. Equilibrium points

In this part, we calculate the equilibrium points of the system (2) to study their stability. For this, we
solve the following system

µ− β S(t)O(t) − (µ + γ)S(t)− µ I(t) + µ tv2I(t) = 0,

β S(t)O(t)− α I(t) + µ tv1I(t) = 0,

k I(t)− µ0O(t) = 0,

−βmSm(t)O(t) = 0.

The equilibrium points are given as follows:
• Disease-free equilibrium state. The free equilibrium state stands for the absence of infection.
Thus, the infected and oocysts groups will be empty, and the whole population will incorporate only
susceptible. Hence, the free equilibrium of the model is given by E0

(

µ
µ+γ

; 0; 0;S∗
m

)

.
• Endemic equilibrium state. The endemic equilibrium state is when both the infection and oocysts
are present in the system. Thus, we have Ee(S

∗; I∗;O∗;S∗
m), such that

S∗ =
µ0(α− µtv1)

βk
,

I∗ =
µβk − µ0(µ+ γ)(α − µtv1)

βkα
=
µ0(µ+ γ)(α − µtv1)

βkα
(R0 − 1),

O∗ =
µβk − µ0(µ+ γ)(α − µtv1)

βµ0α
=
µ0(µ+ γ)(α − µtv1)

βµ0α
(R0 − 1),

S∗
m = 0.

This endemic equilibrium exists and feasible biologically if α− µ tv1 > 0 and R0 > 1.

3.5. Stability

Theorem 3. Given R0 < 1, the equilibrium point E0 is locally asymptotically stable.

Proof. The Jacobian matrix of system (2) at the equilibrium point E0 is given by

JE0
=







−γ − µ µ tv2 − µ − β µ
µ+γ

0 µ tv1 − α β µ
µ+γ

0 k −µ0






. (5)

Its characteristic polynomial equation is given by,

P0(X) = [X + µ+ γ]
[

X2 + q01X + q02
]

.

It is clear that, the first eigenvalue associated with the matrix (5) is X1 = −µ − γ < 0. The rest
eigenvalues of the matrix (5) can be obtained by solving the following equation:

X2 + q01X + q02 = 0, (6)
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where
q01 = −µ tv1 + α+ µ0,

q02 = −µ0(µ tv1 − α)−
k β µ

µ+ γ
= −µ0(−µ tv1 + α) [R0 − 1] .

Since µ tv1 < α and R0 < 1 we obtain q01 > 0 and q02 > 0. Then, according to Rooth–Hurwitz
criteria [33], we conclude that the real parts of the eigenvalues of (6) are strictly negative. Therefore,
the free equilibrium point E0 is locally asymptotically stable. �

Theorem 4. Assuming that R0 > 1, the equilibrium point Ee is locally asymptotically stable.

Proof. At the equilibrium point Ee, the Jacobian matrix of system (2) is defined as follows

JEe =







−
β µk+µ0(µ+γ)(µ tv1−α)

µ0α
− γ − µ µ tv2 − µ −

µ0(−µ tv1+α)
k

β µ k+µ0(µ+γ)(µ tv1−α)
µ0α

µ tv1 − α
µ0(−µ tv1+α)

k

0 k −µ0






.

Its characteristic polynomial equation Pe(X) is as follows:

Pe(X) = X3 + q11X
2 + q12X + q13, (7)

where

q11 =
αµ0(α− µtv1) + γ µ tv1µ0 + µ2tv1µ0 + k β µ+ αµ20

µ0α
> 0,

q12 =
µ
(

γ tv1µ
2
0 + µ tv1µ0 + k αβ + k β µ0

)

µ0 α
> 0,

q13 = µ0(γ + µ)(α− µ tv1) (R0 − 1) > 0,

q11q12 − q13 =
[

− αγµ2t2v1µ
3
0 + γ2µ2t2v1µ

3
0 + γµ3t2v1µ

3
0 − ζα2βµ2tv1µ0 + ζαβγµ2tv1µ0 + ζαβµ3tv1µ0

− ζαβµ2tv1µ
2
0 + 2ζβγµ2tv1µ

2
0 + ηβµ3tv1µ

2
0 + α2γµtv1µ

3
0 + αγµtv1µ

4
0 + γµ3t2v1µ

2
0

− αµ3t2v1µ
2
0 + µ4t2v1µ

2
0 + ζ2αβ2µ2 + ζ2β2µ2µ0 + ζα3βµµ0 + 2ζα2βµµ20 + ζβµ3tv1µ0

+ ζαβµµ30 + α2µ2tv1µ
2
0 + αµ2tv1µ

3
0

]

−
[

α2γµtv1µ
3
0 + α2µ2tv1µ

3
0 + ζα2βµµ20 − α3γµ30 − α3µµ30

]

= γ2µ2t2v1µ
3
0 + γµ3t2v1µ

3
0 + ζαβγµ2tv1µ0 + ζαβµ3tv1µ0 + 2ζβγµ2tv1µ

2
0 + ηβµ3tv1µ

2
0

+ αγµtv1µ
4
0 + γµ3t2v1µ

2
0 + µ4t2v1µ

2
0 + ζ2αβ2µ2 + ζ2β2µ2µ0 + ζαβµµ30 + ζβµ3tv1µ0

+ αµ2tv1µ
3
0 +

[

− αγµ2t2v1µ
3
0 + α2γµtv1µ

3
0

]

+
[

2ζα2βµµ20 − ζαβµ2t1µ20 − ζα2βµµ20
]

+
[

− α2γµtv1µ
3
0 + α3γµ30

]

+
[

− α2µ2tv1µ
3
0 + α3µµ30

]

+
[

− ζα2βµ2tv1µ0 + ζα3βµµ0
]

+
[

− αµ3t2v1µ
2
0 + α2µ2tv1µ

2
0

]

= γ2µ2t2v1µ
3
0 + γµ3t2v1µ

3
0 + ζαβγµ2tv1µ0 + ζαβµ3tv1µ0 + 2ζβγµ2tv1µ

2
0 + ηβµ3tv1µ

2
0

+ αγµtv1µ
4
0 + γµ3t2v1µ

2
0 + µ4t2v1µ

2
0 + ζ2αβ2µ2 + ζ2β2µ2µ0 + ζαβµµ30 + ζβµ3tv1µ0

+ αµ2tv1µ
3
0 +

[

αγµtv1µ
3
0 + ζαβµµ20 + α2γµ30 + α2µµ30 + ζα2βµµ0 + αµ2tv1µ

2
0

]

[α− µtv1]

> 0.

Since α − µ tv1 > 0 and according to Rooth–Hurwitz criteria [33], we conclude that the real parts
of the eigenvalues of (7) are strictly negative. Therefore, the endemic equilibrium point Ee is locally
asymptotically stable. �

4. Optimal control problem

Health problems have always been of a great issue for governments in all countries. Several governments
have proposed health intervention strategies to manage and eradicate the spread of infectious diseases.
The problem is that the cost of transforming these strategies into the field is very high. Therefore, it is
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necessary to develop an efficient method that reduces the number of infections and the costs associated
with it.

Controlling toxoplasmosis transmission involves a two-pronged approach focusing on treatments
for infected cats and control of oocysts in the environment. It is primarily imperative to treat cats
that have contracted the infection since they are the main hosts that excrete Toxoplasma gondii
oocysts. Frequent veterinary examinations and timely administration of antiprotozoal drugs, such as
azithromycin or clindamycin, might decrease oocyst shedding. To reduce the amount of oocysts in
the environment, it is necessary to manage and reduce them. Developing strict sanitation protocols,
including routinely cleaning and disinfecting cat litter boxes, disposing of cat waste properly, and
ensuring that cat feces are properly disposed of to prevent contamination of water and soil, is necessary
for this. Additionally, educating cat owners about the importance of these practices can further reduce
environmental contamination and the number of infected cats, ultimately controlling the spread of
toxoplasmosis [1]. In this section, we investigate two optimal control strategies:

1. The control by treatment strategy for infected cats, which is the time-dependent control variable
denoted by w1(t).

2. The control via managing and treating oocysts in the environment. This control targets the oocyst
population, and is represented by the time-dependent variable w2(t).

After considering the proposed controls w1(t) and w2(t), we get the following controlled system

dS(t)

dt
= µ− β S(t)O(t)− (µ+ γ)S(t) + w1I(t)− µ I(t) + µ tv2I(t),

dI(t)

dt
= β S(t)O(t)− α I(t)− w1I(t) + µ tv1I(t),

dO(t)

dt
= k I(t)− µ0O(t)− w2O(t),

dSm(t)

dt
= −βmSm(t)O(t).

(8)

The aim is to minimize the following objective functional

J(w1, w2) =

∫ T

0

(

I(t) +O(t) +
C1w

2
1(t)

2
+
C2w

2
2(t)

2

)

dt, (9)

where the parameters C1 > 0 and C2 > 0 balance the size of the terms and represent the weight
factor’s characterization based on the costs and benefits of the treatment. The purpose is to minimize
the objective function presented in the equation (9) by decreasing the numbers of the infected cats and
oocysts in the environment. To put it differently, we are looking for an optimal control w∗ = (w∗

1, w
∗
2)

which satisfies

J(w∗
1 , w

∗
2) = min{J(w1, w2) : (w1, w2) ∈W},

where W is the control’s set defined by:

W =
{

w = (w1, w2) : wi=1,2 measurable, 0 6 wi(t) 6 1, t ∈ [0, tf ]
}

.

4.1. Optimal control existence

According to Fleming and Rishel [34], we can obtain the existence of the optimal control w∗. Thus,
the five following steps must be checked:

1. W is a nonempty set.
2. W is convex and closed.
3. solution of (8) is bounded by a linearity in the state and control variables.
4. The objective function integrand is convex.
5. There exist C1 > 0, C2 > 0 and ψ > 1 such that the integrand L(S, I,O, Sm) of the objective

functional satisfies L(S, IN , IR, R) > C1 + C2(‖w1‖
2 + ‖w2‖

2)
ψ

2 .

The following theorem shows the existence of the optimal control.
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Theorem 5. For the controlled system (8), there exist optimal controls (w∗
1, w

∗
2) ∈W such that

J(w∗
1 , w

∗
2) = min{J(w1, w2) : (w1, w2) ∈W}.

Proof. The existence of the optimal control can be obtained using a result by Fleming and Rishel [34],
checking the above steps. According to Lukes [35], an existence result was used to give the existence
of solution of system (8) with bounded coefficients, which gives condition 1. By definition the control
set W is convex and closed. Using the boundedness of the solution and it is linearity in W , the right
side of (8) verify the third condition. The integrand in the objective functional (9) is convex on W .
In addition, we can easily see that there exist a constant ψ > 1 and positive numbers C1 and C2 > 0

satisfying L(S, I,O, Sm) > C1 + C2(‖w1‖
2 + ‖w2‖

2)
ψ

2 . This complete the proof. �

4.2. Optimal control characterization

This subsection provides the necessary conditions for the optimal control problem using the Pon-
tryagin’s Maximum Principle [36]. In order to characterize the optimal control w∗ = (w∗

1, w
∗
2), the

Hamiltonian H is defined from the formulation of objective functional (9) as follows:

H = I(t) +O(t) +
C1

2
w2
1(t) +

C2

2
w2
2(t) +

4
∑

i=1

λigi, (10)

where gi is the right hand side of the differential equation of each state variable of the system (8).
Using Pontryagin’s maximum principle [36], we can determine the optimal control w∗ = (w∗

1, w
∗
2) for

the problem (8) and its associated trajectory X∗ = (S∗, I∗, O∗, S∗
m)T . Then the following theorem is

stated.

Theorem 6. Given the optimal control w∗ = (w∗
1 , w

∗
2) and the corresponding solution X∗ =

(S∗, I∗, O∗, S∗
m)T of the system (8), there exists adjoint functions λ1, λ2, λ3 and λ4 satisfying the

following equations:

λ′1 = (λ1 − λ2)β O(t) + λ1(µ + γ),

λ′2 = −1 + (λ1 − λ2)w1 + (λ1 − λ1tv1 − λ2tv2)µ+ αλ2 − k λ3,

λ′3 = −1 + (λ1 − λ2)β S(t) + λ3(µ0 + w2) + λ4βmSm(t),

λ′4 = λ4βmO(t),

with the transversality conditions at time tf :

λi(tf ) = 0, ∀i = 1, . . . , 4.

Moreover, for t ∈ [0, tf ], the optimal controls w∗
1 and w∗

2 are given by

w∗
1 = min

(

1,max
(

0, λ2−λ1

C1
I(t)

))

, (11)

w∗
2 = min

(

1,max
(

0, λ3

C2
O(t)

))

. (12)

Proof. Let the Hamiltonian H defined by (10). The adjoint equations and transversality conditions
can be obtained by using Pontryagin’s Maximum Principle [36] such that

λ′1 = −
∂H

∂S
= (λ1 − λ2)β O(t) + λ1(µ+ γ),

λ′2 = −
∂H

∂I
= −1 + (λ1 − λ2)w1 + (λ1 − λ1tv1 − λ2tv2)µ + αλ2 − k λ3,

λ′3 = −
∂H

∂O
= −1 + (λ1 − λ2)β S(t) + λ3 (µ0 + w2) + λ4 βm Sm(t),

λ′4 = −
∂H

∂Sm
= λ4 βmO(t),

with the transversality conditions at tf given by λ1(tf ) = 0, λ2(tf ) = 0, λ3(tf ) = 0 and λ4(tf ) = 0.
The optimal controls w∗

1 and w∗
2 can be solved from the following optimality conditions,
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∂H

∂w1
= 0,

∂H

∂w2
= 0,

this gives
∂H

∂w1
= C1w1 + (λ1 − λ2) I(t) = 0, and

∂H

∂w2
= C2w2 − λ3O(t) = 0.

Finally using the bounds λ1, λ2, λ3 and λ4 on the control W , we can easily obtain w∗
1 and w∗

2 in the
form (11) and (12), respectively. �

5. Numerical simulation

This section focuses on numerical simulations of the mathematical model (2) to explore various toxo-
plasmosis scenarios and the impact of controls w1 and w2. We investigate both R0 < 1 and R0 > 1
scenarios to validate theoretical predictions. Key strategies for reducing toxoplasmosis prevalence in-
clude vaccination and environmental oocyst removal. Therefore, our simulations will vary vaccination
rates and the rate of oocyst removal. Additionally, we examine different transmission rates between
oocysts and populations of cats and mice. Varying the vaccination rate γ and the oocysts mortality
rate µ0 allows us to simulate diverse outcomes.

Each simulation computes steady states to confirm the theoretical stability results discussed earlier.
A critical parameter is the transmissibility of toxoplasmosis via oocysts, which determines the basic
reproduction number R0 [37]. Initial estimates of environmental oocyst loads are derived from an
adapted equation based on [23].

Most simulations employ parameter values detailed in Table 1, reflecting real-world conditions with
varying degrees of certainty. The values used here are drawn from different studies [4, 8, 20, 38].

Table 1. Parameter values in the simulation.

Parameter Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9

α 1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

k 2 · 107 2 · 107 2 · 107 2 · 107 2 · 107 2 · 107 2 · 107 2 · 107

µ 1

260

1

260

1

260

1

260

1

260

1

260

1

260

1

260

βm 10−9 10−9 10−9 10−9 10−9 10−9 10−9 10−9

tv1 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
tv2 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
β 0.18 · 10−9 0.18 · 10−8 0.18 · 10−7 0.18 · 10−7 0.18 · 10−8 0.18 · 10−8 0.18 · 10−8 0.18 · 10−8

γ 0.001 0.001 0.001 0.08 0 0 0.001 0.001
µ0

1

26

1

26

1

26

1

26

1

168

1

13

1

26

1

26

u — — — — — — — varied
v — — — — — — — varied
R0 0.1486 1.4859 14.8594 0.8588 12.0979 0.9361 1.4859 —

We first consider a case where R0 = 0.1486 < 1. In this case, we have taken a low vaccination rate
of γ = 0.001 in the vaccination program with the transmission rate β = 1.8 · 10−10. The dynamics of
the subpopulation are depicted in Figure 2, and the parameter values used are given in Table 1. As a
result, the infection dies out as the solution approaches the steady state E0. The disease eventually
disappears despite the low immunization rate. The theoretical stability analysis and these numerical
results are in agreement.

For the second case, when R0 = 1.4859 > 1, the illness becomes endemic when the number of
sick cats reaches a steady state that differs from zero, as seen in Figure 3. Therefore, the endemic
equilibrium point Ee is reached when the transmission rate β is increased (equal 18 · 10−10) such that
R0 > 1.

Next, we examine the effects of immunization programs on the dynamics of mouse and cat popula-
tions. We examine a scenario in which cats are extremely vulnerable to oocyst infection. It should be
noted that cats can become infected with Toxoplasma gondii by consuming food contaminated by the
excrement of another cat that is shedding the parasite’s tiny feces, as well as through vertical transmis-
sion. Initially, we set the value of the transmission rate β = 0.18 ·10−7 so that R0 = 14.8594 > 1 as we
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Figure 2. The dynamics (S(t), I(t), O(t), Sm(t)) across the free equilibrium point E0.

Figure 3. The dynamics (S(t), I(t), O(t), Sm(t)) across the endemic equilibrium point Ee.

can see in Figure 4, the infection is still present. Furthermore, we place the initial conditions far from
the disease-free equilibrium E0. Then, we have increased the vaccination rate to γ = 0.08, resulting in
R0 < 1 (R0 = 0.8588). Figure 5 illustrates that even though oocysts have a high infectivity, both the
proportion of infected cats and the total quantity of oocysts go extinct. This specific outcome, where
the basic reproduction number R0 < 1, demonstrates the efficacy of a cat immunization program in
eradicating the illness.

In the following case we investigate the effects of a public health initiative that aims to lower
oocyst levels in the absence of immunization (γ = 0). In order to ensure that R0 < 1, we vary
the oocyst mortality rate (µ0 = 1/168). Assuming a high oocyst infection to cats (R0 = 12.0979)
which increases the number of infected individuals and the number of oocysts in the environment, as
shown in Figure 6. To highlight the local stability of the endemic state Ee, we intentionally set initial
conditions significantly different from the disease-free equilibrium E0. Figure 7 shows how the system
can approach a steady state free of illness by increasing the rate at which oocysts are cleared (µ0 = 1/13
in this case we get R0 = 0.9361). This implies that reducing the prevalence of toxoplasmosis without
a vaccination campaign is achievable, as long as an effective method for cleaning the oocyst habitat is
used.

The above figures show the usefulness of using vaccination (high value of γ 6= 0, Figure 5) and
cleaning oocysts from the environment (high value of m0, Figure 7). Therefore, in the following, we
examine the effectiveness of the control optimal, as we can see in Figure 9 and compared to Figure 8,
the numbers of infected cats and oocysts are decreased and then disappeared from the environment.
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Figure 4. The dynamics (S(t), I(t), O(t), Sm(t)) when γ = 0.001 and R0 = 14.8594.

Figure 5. The dynamics (S(t), I(t), O(t), Sm(t)) when γ = 0.08 then R0 = 0.8588.

Figure 6. The dynamics (S(t), I(t), O(t), Sm(t)) when µ0 = 1/168 and γ = 0 then R0 = 12.0979.
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Figure 7. The dynamics (S(t), I(t), O(t), Sm(t)) when µ0 = 1/13 and γ = 0 then R0 = 0.9361.

Figure 8. The dynamics (S(t), I(t), O(t), Sm(t)) without the controls w1 and w2.

Figure 9. The dynamics (S(t), I(t), O(t), Sm(t)) with the controls w1 and w2.
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6. Conclusion

This study presents a mathematical model for the transmission dynamics of Toxoplasma gondii in
cat and mouse populations, incorporating vaccination and environmental contamination by oocysts.
The model is shown to be mathematically and biologically well posed through proofs of existence,
uniqueness, boundedness, and positivity of solutions.

Using the basic reproduction number R0, we establish that the disease-free equilibrium is locally
asymptotically stable when R0 < 1, while the endemic equilibrium is locally asymptotically stable
when R0 > 1. An optimal control framework is further developed to reduce the number of infected
cats and the environmental oocyst load. Treatment of infected cats and management of environmental
oocysts are shown, both analytically and numerically, to be effective in mitigating disease transmission.

Numerical simulations support the theoretical analysis and highlight the impact of vaccination and
environmental control strategies. Future work will extend the model to include human populations
and explicitly account for both vertical and horizontal transmission pathways of Toxoplasma gondii.
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Математичне моделювання та стратегiї оптимального керування
токсоплазмозом iз декiлькома хазяями

Уядрi М.1, Ель Куфi А.2, Бельхдiд С.3

1Лабораторiя iнформатики, математики та її застосувань, кафедра математики,

Факультет природничих наук Ель-Джадiди, Унiверситет iменi Шуайба Дуккалi,

Ель-Джадiда, Марокко
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3Лабораторiя фундаментальної математики та її застосувань, кафедра математики,

Факультет природничих наук Ель-Джадiди, Унiверситет iменi Шуайба Дуккалi,
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Токсоплазмоз є одним iз найпоширенiших iнфекцiйних захворювань у свiтi через його
шкiдливий вплив як на людей, так i на тварин. У цьому дослiдженнi представлено
динамiку токсоплазмозу в популяцiях котiв i мишей. Розглянуто безперервну вак-
цинацiю котiв, горизонтальну передачу в обох популяцiях та враховано вертикальну
(вроджену) передачу лише для популяцiї котiв. Крiм того, враховано вплив ооцист
паразита Toxoplasma gondii, який є збудником токсоплазмозної iнфекцiї. У роботi
наведено комплексний аналiз додатностi, обмеженостi та стiйкостi точок рiвноваги.
Крiм того, запропоновано керовану систему з двома стратегiями керування, якi спря-
мованi на мiнiмiзацiю iнфiкованої популяцiї за одночасної оптимiзацiї витрат. Для
пiдтвердження аналiтичних результатiв наведено чисельний приклад.

Ключовi слова: Toxoplasma gondii; вакцинацiя; аналiз стiйкостi; вертикальна пе-

редача; горизонтальна передача; оптимальне керування.
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