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1. Introduction

The stochastic control theory is a potent paradigm to model and analyze the decision-making prob-
lems under random dynamics. This theory first appeared in the 1960s for linear state dynamics and
the quadratic cost function. This problem is also called the linear stochastic regulator. The problem
of optimal stochastic control began to be applied in finance and management in the 1970s, notably
with the publication of Merton’s paper on portfolio allocation [1]. Subsequently, many authors have
generalized Merton’s model and results; see [2, 3]. The two major powerful ways and crucial methods
of solving stochastic optimal control problems are well known as Pontryagin’s maximum principle [4]
and Bellman’s dynamic programming principle [5]. These principles have greatly influenced the de-
velopment of stochastic control theory and have been extended to solve many complex problems in
contemporary science and technology. Another option for solving stochastic control problems is to use
numerical approaches such as classical numerical methods, e.g., finite differences, which are commonly
used to approximate the partial differential equations (PDEs) associated with control problems. How-
ever, these methods suffer from exponentially increasing complexity with respect to the dimensionality
of the state space, while the Markov chain approximation method approximates the original controlled
process with a controlled Markov chain on a finite state space [6]. Then, Monte Carlo methods, in
particular backward Monte Carlo approaches, estimate the solution by simulating many stochastic tra-
jectories. But these classical approaches still suffer from high computational cost and potentially slow
convergence. In the past few years, deep learning approaches have been rapidly developed and have
shown great success in high-dimensional problems in many application domains [7], and they really
pave the way for reducing the curse of dimensionality. In fact, the deep learning method has proven
successful in the realm of stochastic optimal control problems, as well as in solving (backward) forward
stochastic differential equations (FBSDE) for some highly dimensional problems [8–10]. Due to the
favorable results concluded in [8], this type of problem attracted attention, and the research commu-
nity has proposed many neural network-based algorithms to address such problems, especially the deep
learning-based algorithms that can be used from both paradigms: stochastic maximum principle and
dynamic programming, such as e.g., [11–15].
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A good number of these algorithms are based on a forward-backward stochastic differential equation
(FBSDE) obtained through a stochastic characterization of the solution to the Hamilton–Jacobi–
Bellman (HJB) equation, taking advantage of links between PDEs and BSDEs given by nonlinear
Feynman–Kac type results. However, these techniques become intractable as soon as one also controls
the diffusion of the state process, since they do not solve for the second derivatives of the value
function, which are necessary to determine optimal control. For overcoming this problem and building
a diffusion control formulation, the authors in [11] have developed a deep BSDE algorithm, and the
corresponding FBSDE satisfy the stochastic maximum principle (SMP), which they have named the
Deep SMP-BSDE.

This work presents an approach using the maximum principle for a stochastic control problem where
the dynamics are given by a diffusion process with jumps, which are often more realistic than the non-
jump-only background models. The principle of maximum was initially introduced by Pontryagin et
al. for the deterministic case [16]. The analogous maximum principle for Itô diffusions was established
by [17] and later extended by [18], and others. A sufficient maximum principle has recently been
established for jump diffusions by [19]. The rest of this work is organized as follows. In Section 2
we provide some preliminaries about stochastic optimal control problems with jumps and recast our
stochastic optimal control problem as a new variational problem. In Section 3 we derive our numerical
algorithm for solving this last problem, and we give different neural network architectures. In the
final section, we illustrate the numerical results and make a comparison of the results achieved by the
proposed algorithms.

2. Preliminaries and problem formulation

2.1. Notations and preliminaries

In this section, we first introduce the necessary notations and formalize the underlying assumptions
that govern our framework. We then establish preliminary results that will play a central role in the
subsequent analysis. Afterwards, we rigorously formulate the stochastic control problem with jumps
along with its associated adjoint processes and finally derive the corresponding stochastic maximum
principle.

We consider a complete filtered probability space (Ω,F,Ft, P ) for all t ∈ [0, T ], where T < ∞.
(Ft)t>0 is the natural filtration generated by a d-dimensional Brownian motion (Bt) ∈ R

d and the
Poisson random measure L̃(dt, dz) ∈ R

l such that the initial σ-algebra F0 includes all P -null sets in
F , and that the filtration {Ft}t>0 is right-continuous.

Assume that µ(dz), the σ finite Levy measure associated with the Poisson random measure
L(dt, dz), satisfies the following conditions:

L̃(dt, dz) = L(dt, dz) − µ(dz) dt and

∫

Rn\{0}
|z|2µ(dz) <∞.

The second condition signified that the Poisson random measure L does not have many big jumps;
however, this does not imply that they do not occur, but rather that the probability of their occurrence
is low. The term µ(dz) dt is referred to as the compensator associated with the Poisson random measure
L̃(dt, dz).

We define (Lt) the component that models jumps in terms of the Poisson random measure L within
a Lévy process as follows:

∀ 0 6 t 6 T, Lt :=

∫ t

0

∫

Rn\{0}
z L(ds, dz). (1)

And for all t > 0 ∆Lt := Lt − Lt−. Also, we define, the Poisson random process Nt in terms of a
Poisson random measure L by

Nt :=

∫ t

0

∫

Rn\{0}
L(ds, dz).

(Nt) has the intensity λt where λ =
∫
Rn\{0} µ(dz) <∞.
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In this work, we are interested in solving a stochastic optimal problem when the state system is
described by a diffusion process with jumps. Precisely, we consider the following problem.

Find u∗ ∈ A that maximizes the performance criterion J such that

J(u) = E

[∫ T

0
f(t, xt, ut) dt+ g(xT )

]
,

that means finding u∗ ∈ A that satisfies

J (u∗) = sup
u∈A

J(u), (2)

where f : [0, T ]×R
n × U → R is a continuous function and g : Rn → R is concave and is C1. Suppose

that the state system X(t) is defined in R
n as a diffusion process with jumps, and it is given by




dXt = b(t,Xt, ut) dt+ c(t,Xt, ut) dBt +

∫

Rn\{0}
γ(t,Xt− , ut− , z) L̃(dt, dz),

X(0) = x0 ∈ R
n,

(3)

where

b : [0, T ] ×R
n × U 7−→ R

n, c : [0, T ]×R
n × U 7−→ R

n×d, γ : [0, T ]×R
n × U ×R

n 7−→ R
n×ℓ

are given continuous functions, and

E

[∫ T

0
f−(t,Xt, ut) dt+ g−(XT )

]
<∞.

The process u ∈ U ∈ R
n is our control. Note that A is the set of all admissible controls; this set

contains each adapted and cаglаd control u such that equation (3) has a unique strong solution Xu.
So, the next step is to give the Hamiltonian function and the associated adjoint system for the above
problem; finally, we give the various assumptions for the existence of the solution to different problems.
Now, we impose the following assumption.

Hypothesis 1.

1. The functions b, c, and g are locally bounded and Borel-measurable functions.
2. There exists a constant K > 0 and a deterministic positive function ϕz such that
∀(t, v, v′,X,X ′, z) ∈ [0, T ]× U2 × R

2n × R
n \ {0} and for Ψ = b, c, the following holds:

• |Ψ(t,X, v) −Ψ(t,X ′, v′)| 6 K (|X −X ′|+ |v − v′|),
• |γ(t,X, v, z) − γ(t,X ′, v′, z)| 6 ϕ(z) (|X −X ′|+ |v − v′|),
• |Ψ(t,X, v)| 6 C (1 + |X|+ |v|),
• |γ(t,X, v, z)| 6 ϕz (1 + |X|+ |v|).

3. Furthermore, we impose that A is a compact subset of Rn. In addition, we assume that,∫

Rn\{0}
exp {ϕ(z)} µ(dz) <∞.

As stated in [20], under assumptions 1, for any admissible control u(·) ∈ A and initial state x0 ∈ R
n,

the system (3) admits a unique strong solution. Furthermore, according to [19], the Hamiltonian
function associated with this problem is written as follows:

H(t,X, u, P,Q, r) = f(t,X, u) + PbT (t,X, u) + tr
(
cT (t,X, u)Q

)

+

l∑

j=1

n∑

i=1

∫

R\{0}
γij(t,X, u, zj) rij(t, zj)µj(dzj), (4)

H : [0, T ]×R
n×U ×R

n×R
n×d×F → R, where F is the set of functions defined in R

n+1 with values
in R

n×l provided that the integral of the Hamiltonian H converges. From now on, we assume that H
is differentiable from X.

For any admissible pair (Xu, u), we define the corresponding adjoint system as the following back-
ward stochastic differential equation (BSDE):
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


dPt = −∇xH(t,Xt, ut, Pt, Qt, rt(·)) dt +Qt dB(t) +

∫

Rn\{0}
rt(z) L̃(dt, dz),

PT = ∇Xg(XT ),

(5)

The unknown processes of this system are P ∈ R
n, Q ∈ R

n×d, and r ∈ R
n×l. Now, we consider the

following hypotheses.

Hypothesis 2.

1. For all (X, v, Y, Z, r), (X ′ , v′, Y ′, Z ′, r′) ∈ R
n × U × R

n × R
n×d × F , there exists a constant C > 0

such that the following holds:
• |∇XH(t,X, v, Y, Z, r)−∇xH(t,X ′, v′, Y ′, Z ′, r′)|+ |∇g(X)−∇g(X ′)| 6 C(1+ |X|+ |X ′|+ |v|+
|v′|)(|X −X ′|+ |v − v′|) + |Y − Y ′|+ |Z − Z ′|+ |r − r′|),

• |∇XH(t,X, v, Y, Z, r)| + |∇g(X)| 6 C
(
1 + |X|2 + |v|2 + |Y |+ |Z|+ |r|

)
.

2. The function r 7→ ∇XH(t,X, v, Y, Z, r) is increasing for all (t,X, v, Y, Z) ∈ [0, T ]×R
n ×U ×R

n ×
R
n×d and 0 6 r(t, Z) 6 C(1 + |Z|) for all (t, Z) ∈ [0, T ]× R

n×d.

Based on assumption (2) and by [20], the adjoint system (5) admits a unique solution, (Pt, Qt, Rt)
and from the assumptions (1)–(2), the cost function (2) is well defined.

Before giving the maximum stochastic principle for our problem, we assume that the forward system
with jumps 3 and its adjoint system 5 satisfied respectively to two conditions

E

[ ∫ T

0

(
σσT +

l∑

j=1

∫

R\{0}
|γj(t,Xt, ut, zj)|2µj(dzj)

)
dt

]
<∞ ∀u ∈ A,

E

[ ∫ T

0

(
QQT +

l∑

j=1

∫

R\{0}
|rj(t, zj)|2µj(dzj)

)
dt

]
<∞.

(6)

The integrability of the terms in the first condition guarantees well-defined and controllable system
trajectories, while the second condition ensures that the adjoint equation has a stable solution.

Theorem 1 (Ref. [19]). Let û ∈ A such that (X̂t, ût) is the solution of (3) and suppose there exists a
solution (P̂t, Q̂t, r̂t(·)) of the corresponding adjoint equation (5) satisfying assumptions (6). Moreover,
suppose that

H
(
t, X̂t, ût, P̂t, Q̂t, r̂t(·)

)
= sup

v∈U
H
(
t, X̂t, v, P̂t, Q̂t, r̂t(·)

)

for all t ∈ [0, T ], and suppose that the function

(X, v) −→ H
(
t,X, v, P̂t, Q̂t, r̂t(·)

)
(7)

is concave for all t ∈ [0, T ]. Then û is optimal control of the problem (2).

The proof is based on a lemma 3.6 in [21], which provides a formula for integration by parts; she is
also referred to as the Itô formula.

2.2. Problem formulation

It is clear that, according to the theorem 1, any optimal control û associated with an optimal trajectory
x̂ is also the solution of a Hamiltonian system plus a maximization condition of a function H. In our
case, the system is in the form of an FBSDE plus a maximization condition,





dp̂t = −∇xH(t, x̂t, ût, p̂t, q̂t, r̂t(·)) dt + q̂t dBt +

∫

Rn\{0}
r̂t(z) L̃(dt, dz)

dx̂t = b(t, x̂t, ût) dt+ c(t, x̂t, ût) dB(t) +

∫

Rn\{0}
γ (t, x̂t− , ût− , z) L̃(dt, dz),

x̂(0) = x0, p̂T = ∇xg(x̂T ),

H(t, x̂t, ût, p̂t, q̂t, r̂t(·)) = max
v∈U

H(t, x̂t, v, p̂t, q̂t, r̂t(·)) ∀t.

(8)

Using an extension of the approach discussed in [10] and [22] for solving an FBSDE, we consider the
following new control problem, referred to as the associated variational problem, related to the previous
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problem,

inf
p0,qt,rt

E

[∣∣pp0,q,rT −∇xg(x
p0,q,r
T )

∣∣2
]

(9)

subject to




x
p0,q,r
t = x0 +

∫ t

0
b(s, xp0,q,rs , up0,q,rs ) ds +

∫ t

0
c(s, xp0,q,rs , up0,q,rs ) dBs

+

∫ t

0

∫

Rn\{0}
γ
(
s, x

p0,q,r

s−
, u

p0,q,r

s−
, z
)
L̃(ds, dz),

p
p0,q,r
t = p0 −

∫ t

0
∇xH

(
t, xp0,q,rs , up0,q,rs , pp0,q,rs , qs, rs(·)

)
ds+

∫ t

0
qs dBs

+

∫ t

0

∫

Rn\{0}
rs(z) L̃(ds, dz)

u
p0,q,r
t = argmaxv∈UH

(
t, x

p0,q,r
t , v, p

p0,q,r
t , qt, rt(·)

)
∀t.

(10)

Now, we give an important proposition, which will play an important role later on.

Proposition 1. Under assumptions (1)–(2) and (6), the variational control problem (9) satisfied

inf
p0,qt,rt

E
[∣∣pp0,q,rT −∇xg(x

p0,q,r
T )

∣∣2
]
= 0.

Moreover, the corresponding quintuple
(
x
p0,q,r
t , u

p0,q,r
t , p

p0,q,r
t , qt, rt(·)

)
is the unique solution of FB-

SDE (8) and up0,q,rt is the unique solution of problem (2).

Proof. If the assumptions (1)–(2) and (6) hold, then by Theorem 1, the Hamiltonian system (8) has
a unique solution. So, by regarding (p0; qt; rt) as the control of the variational problem (9)–(10), and
observing that the dynamics constraint is satisfied. Since we have pT = ∇xg(xT ) p− a.s. Then

E

[∣∣pp0,q,rT −∇xg(x
p0,q,r
T )

∣∣2
]
= 0,

and the corresponding quintuple (xp0,q,rt , u
p0,q,r
t , p

p0,q,r
t , qt, rt(·)) is the unique solution of the Hamilto-

nian system (8). Indeed, if the assumptions (1)–(2) and (6) hold, the solution is unique. �

Lemma 1. Under the assumptions (1)–(2)–(6), and if there exists (x∗, u∗, p∗, q∗, r∗(·)) solution of (10)
satisfying,

E

[
|p∗T −∇xg(x

∗
T )|2

]
= 0.

Then (x∗, u∗, p∗, q∗, r∗(·)) is the unique solution of (8) and the criterion performance J can be calculated
by

J(u∗) = E

[∫ T

0
f(t, x∗t , u

∗
t ) dt+ g(x∗T )

]
.

Remark 1.

— The previous proposition shows that, under the same assumptions as in the SMP theorem (1), the
variational problem (9)–(10) admits a unique solution, while the lemma demonstrates that this
solution is also the solution to the original control problem (2).

— It is important to highlight the significance of this transformation. The benefit of the new problem
lies in the fact that we are working with a cost function that is quadratic.

3. Numerical algorithms and Neural network architectures

3.1. Numerical algorithm 1

In Section 2, we provided a brief introduction to the Stochastic Maximum Principle (SMP) in the
context of our control problem and reformulated it as a new variational problem equivalent to the
associated Hamiltonian system. In this section, however, we introduce three algorithms based on deep
learning to solve this reformulated variational problem.
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As a first step, we discretize the problem 10. Given a positive integer N and a fixed T > 0,
we consider that the time interval [0, T ] is partitioned as follows: t0 = 0 < t1 = t0 + ∆t < t2 =
t0 + 2∆t < . . . < tN = t0 + N∆t = T assuming that the grid is uniform with a constant step size
∆t = tn+1 − tn = T

N
for each n ∈ {0, 1, . . . , N − 1}. ∆Btn = Btn+1

− Btn denote the increments of
the Brownian motion such that ∆Btn ∼ N(0,

√
∆tn), and ∆Ntn = Ntn+1

−Ntn denote the increments
of the Poisson random process such that ∆Ntn ∼ P(0, λ∆tn). (∆Ln

k)k∈{1,...,dNtn}
the k-th jump of

the process (Lt) (see relation (1)), which occurs on the time interval ]tn, tn+1]. And each element of

(∆Ln
k)k∈{1,...,dNtn}

is sampled from a distribution µ(dz)
λ

1Rn\{0}.
Then, the Euler–Maruyama scheme of the problem 10 can be expressed as




x̃πtn+1
= x̃πtn + b(tn, x̃

π
tn
, ũπtn)∆tn + c(tn, x̃

π
tn
, ũπtn)∆Btn +

∑dNtn

k=1 γ(tn, x̃
π
tn
, ũπtn ,∆L

n
k)

−
∫
Rn\{0} γ(tn, x̃

π
tn , ũ

π
tn , z)µ(dz)∆tn,

p̃πtn+1
= p̃πtn −∇xH(tn, x̃

π
tn , ũ

π
tn , p̃

π
tn , q̃

π
tn , r̃

π
tn)∆tn + q̃πtn ∆Btn + r̃πtn

∑dNtn

k=1 ∆Ln
k

−λr̃πtn
∑dNtn

k=1 E(∆Ln
k)∆tn,

x̃π0 = x0, p̃π0 = p̃0,

ũπtn = argmax
u∈U

H(tn, x̃
π
tn
, u, p̃πtn , q̃

π
tn
, r̃πtn).

(11)

Remark 2. The numerical approximation of the two integrals of the system above can be carried
using various methods, such as the Monte Carlo simulation method.

For the adjoint process ptn , we used a discretization method different from the one applied to
the process xtn . This approach allows us to eliminate the second component of the function rtn ,
meaning that in this discretization, rtn only depends on tn. Consequently, the use of deep learning
to approximate the process rtn becomes more feasible. A similar discretization method was used by
Agram et al. in [23].

{q̃πtn}06n<N and {r̃πtn}06n<N are considered as two controls of the variational problem (9). These
two control are feedback controls of the state x̃πtn , p̃πtn and assume it satisfies, respectively,

q̃πtn = NN θq
1 (tn, x̃

π
tn , p̃

π
tn),

r̃πtn = NN θr
2 (tn, x̃

π
tn , p̃

π
tn).

NN θq
1 and NN θq

2 are two feedforward neural networks. In our work, we use the same neural network
in all discrete instants. Unlike other works that use a neural network at each time step (see, for
example, [10]).

Since both neural networks NN θq
1 andNN θr

2 have the same structure, we only develop, for example,

the feedforward neural network NN θq
1 . For that, we consider NN θq

1 the neural network that serves to
approximate the process q̃πtn . Denote by s0 the input dimension and by s1 the output dimension. The
total number of hidden layers is specified by a fixed integer L (not counting input and output layers).
We define s to be the number of neurons on each hidden layer and s represent the uniform number of
neurons in all hidden layers.

NN θq
1 is defined as a succession of affine transformations and nonlinear activation functions. Specif-

ically, we have:

NN θq
1 = ΨL+1 ◦ σa ◦ΨL ◦ · · · ◦ σa ◦Ψ1 ◦ σa ◦Ψ0,

where σa is an activation function, for instance ReLU, tanh, sigmoid, ELU, . . . ; Ψ0 is a function from
R
s0 to R

s, and for l = 1 to L, Ψl is a function defined on R
s to R

s. ΨL+1 is a function from R
s with

values in R
s1 . Each affine transformation Ψl is expressed in the form

Ψl(x) = Alx+ βl,

where Al represents a weight matrix and βl denotes a bias vector.

The NN θq
1 has parameters θq, which consist of all the weights and biases associated with the affine

functions Ψ, i.e., θq = (Al;βl)06l6L+1.
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The total number of parameters is

NL,s0,s,s1 = (s0 + 1)s+ L(1 + s)s+ (s+ 1)s1,

The neural network NN θq
1 is then trained by searching for the parameters θq that minimize the

cost function J(p0, q, r) = E
[∣∣pp0,q,rT −∇xg(x

p0,q,r
T )

∣∣2
]
. This can be accomplished using a standard

training algorithm, such as stochastic gradient descent or its variants, with the ADAM algorithm [24].
The cost functional J(p0, q, r) can be approximated by

J(p0, q, r) =
1

M

M∑

j=1

∣∣∣p̃π,jT −∇xg(x̃
π,j
T )

∣∣∣
2
.

M denotes the total number of Monte Carlo samples. We treat t, xn and pn as inputs; therefore, the

dimensions of the input and output layers for NN θq
1 are 2n+1 and n×m, respectively. Now, we recall

the following universal approximation theorem.

Theorem 2 (Ref. [25]). Assume that the nonconstant function σa is bounded and continuous. The
neural network NN 1 is then dense in C(Rn) with L > 2.

The architecture of Algorithm 1 is as follows.

x0 p0 t0

u0, q0, r0

Hq Hr

q0 r0

u0

x1, p1, t1

∆Wt0

∆Lk
t0k∈{1,...,dN0}

∆Nt0

Hq Hr

q1 r1

u1

. . . xN−1, pN−1, tN−1

Hq Hr

qN−1 rN−1

uN−1

∆WtN−2

∆Lk
tN−2k∈{1,...,dNN−2}

∆NtN−2

xN , pN , tN

uN−2, qN−2, rN−2 uN−1, qN−1, rN−1

∆WtN−1

∆Lk
tN−1k∈{1,...,dNN−1}

∆NtN−1

|pN −∇xg(xN )|2

Figure 1. The architecture for Algorithm 1.

Hq and Hr represent the hidden layers associated with the two networks NN θq
1 and NN θr

2 , re-
spectively. The weights biases of the hidden layers (θq, θr) and p0, are trainable parameters. ũn is a

function of (tn, x̃n, p̃n, q̃n, r̃n). q̃n and r̃n represent the outputs for NN θq
1 and NN θr

2 , respectively, at
each time step.

The neural network described above is employed at all time steps. However, the main
problem with Algorithm 1 is that solving an extremum problem requires calculating ũ

π,l,j
tn

=

argmax
u∈U

H
(
tn, x̃

π,l,j
tn

, u, p̃
π,l,j
tn

, q̃
π,l,j
tn

, r̃
π,l,j
tn

)
at each time step, which is not straightforward, especially

for high-dimensional problems and functions with multiple variables. In high dimensions, an explicit
solution for these problems is often unavailable. However, there are several approximation methods
that address this challenge, such as the BFGS algorithm [26]. Therefore, using this algorithm demands
significant computational effort. Next, we present the pseudocode for Algorithm 1.
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Algorithm 1 Algorithm with 2-NNs.

Require: Initial parameters (θ0q ; θ
0
r ; p̃

0,π
t0

), x0 and η a learning rate;

Ensure: (x̃l,πtn , ũ
l,π
tn
, p̃

l,π
tn
, q̃

l,π
tn
, r̃

l,π
tn

);
1: for l = 0, . . . ,MaxIter
2: for j = 1, . . . ,M
3: Generate ∆W tn

j based on N (0,∆tn);

4: Generate ∆N tn
j based on P (λ∆tn);

5: Generate ∆Ltn
j,k based on µ(dz)

λ
1Rn\{0} for each k = 1, . . . , dN tn

j where µ(dz) = exp(−ν‖z‖)dz,
z ∈ R

n \ {0};
6: x̃

π,l,j
t0

= x̃0
π, p̃π,l,jt0

= p̃0
π,l;

7: for n = 0, . . . , N − 1

8: q
l,π,j
tn

= NN θq
1 (tn, x̃

π,l,j
tn

, p̃
π,l,j
tn

, θlq);

9: r
l,π,j
tn

= NN θr
2 (tn, x̃

π,l,j
tn

, p̃
π,l,j
tn

; θlr);

10: ũ
π,l,j
tn

= argmax
u∈U

H(tn, x̃
π,l,j
tn

, u, p̃
π,l,j
tn

, q̃
π,l,j
tn

, r̃
π,l,j
tn

);

11: x̃
π,l,j
tn+1

= x̃
π,l,j
tn

+ b(tn, x̃
π,l,j
tn

, ũ
π,l,j
tn

)∆tn + c(tn, x̃
π,l,j
tn

, ũ
π,l,j
tn

)∆Btn +
∑dNtn

k=1 γ(tn, x̃
π,l,j
tn

, ũ
π,l,j
tn

,∆Ln
k )

−
∫
Rn\{0}

γ(tn, x̃
π,l,j
tn

, ũ
π,l,j
tn

, z)µ(dz)∆tn;

12: p̃
π,l,j
tn+1

= p̃
π,l,j
tn

− ∇xH(tn, x̃
π,l,j
tn

, ũ
π,l,j
tn

, p̃
π,l,j
tn

, q̃
π,l,j
tn

, r̃
π,l,j
tn

)∆tn + q̃
π,l,j
tn

∆Btn + r̃
π,l,j
tn

∑dNtn

k=1 ∆Ln
k

−λr̃π,l,jtn

∑dNtn

k=1 E(∆Ln
k )∆tn;

13: loss = 1
M

∑M

j=1

[
p̃
π,l,j
tN
−∇xg(x̃

π,l,j
tN

)
]2

;

14: J(ũπ,l) = 1
M

∑M

j=1

[
1
M

∑N−1
n=0 f(tn, x̃

π,l,j
tn

, ũ
π,l,j
tn

) + h(x̃π,l,jtn
)
]
;

15: (θl+1
q , θl+1

r , p̃
π,l+1
0 ) = (θlq, θ

l
r, p̃

π,l
0 )− η∇loss;

3.2. Numerical algorithm 2

To overcome the difficulty of Algorithm 1 and avoid solving the maximization problem at each time
step, we propose a new algorithm based on three neural networks. This algorithm assumes that all
coefficients of the Hamiltonian system (8) are continuously differentiable in u. These conditions insure
that the control domain U = R

n and the optimal control ũ are located on the boundary of the control
domain, and then the maximization condition implies

Hu(t; x̃t; ũt; p̃t; q̃t) = 0, ∀u, ∀t ∈ [0, T ], a.s.

Therefore, this modification of the constraints leads to a change in the cost function of the new
variational problem to be solved. The cost function of the new problem is as follows:

inf
p̃0,{q̃t},{r̃t},{ũt}

E

[∣∣p̃q,u,rTN
−∇xg(x̃

q,u,r
TN

)
∣∣2 + α

∫ T

0
Hu(t; x̃

q,u,r
t ; ũt; p̃

q,u,r
t ; q̃t, r̃t)

2dt

]
, (12)

α is a hyperparameter. Using the same approach as in the proof of Proposition 1, it is clear that if the
cost function (12) tends to 0, then the (x̃q,u,rt ; ũt; p̃

q,u,r
t ; q̃t, r̃t) converges to the optimal solution of the

problem (8). Compared to Algorithm 1, this time, it is necessary to construct a new neural network
NN θu

3 that allows us to simulate ũtn . This new network has (1 + 2n)-dim in the input layer and a

k-dimensional output layer. For the hidden layers, NN θu
3 has the same structure as NN θq

1 and NN θr
2 .

These three networks are trained according to the following cost function:

1

M

M∑

j=1

[
(
p̃
π,l,j
tN
−∇xg(x̃

π,l,j
tN

)
)2

+ α
T

N

N−1∑

n=0

(
∇uH(tn, x̃

π,l,j
tn

, ũ
π,l,j
tn

, p̃
π,l,j
tn

, q̃
π,l,j
tn

, r̃
π,l,j
tn

)
)2
]
.

Thus, the pseudo-code for Algorithm 2 is as follows.
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Algorithm 2 Algorithm with 3-NNs.

Require: Initial parameters (θ0q ; θ
0
r , θ

0
u, p̃

0,π
0 ), x0

π, η as learning rate and the hyper-parameter α;

Ensure:
(
x̃
l,π
tn
, ũ

l,π
tn
, p̃

l,π
tn
, q̃

l,π
tn
, r̃

l,π
tn

)
;

1: for l = 0, . . . ,MaxIter
2: for j = 1, . . . ,M

3: Generate ∆W tn
j ∼ N (0,∆tn), ∆N

tn
j ∼ P (λ∆tn) and ∆Ltn

j,k ∼
µ(dz)

λ
1Rn\{0} for each k = 1, . . . , dN tn

j

where µ(dz) = exp(−ν‖z‖)dz, z ∈ R
n \ {0};

4: x̃
π,l,j
t0

= x̃0
π, H = 0, p̃π,l,jt0

= p̃0
π,l;

5: for n = 0, . . . , N − 1

6: q
l,π,j
tn

= NN θq
1 (tn, x̃

π,l,j
tn

, p̃
π,l,j
tn

; θlq);

7: r
l,π,j
tn

= NN θr
2 (tn, x̃

π,l,j
tn

, p̃
π,l,j
tn

; θlr);

8: u
l,π,j
tn

= NN θu
3 (tn, x̃

π,l,j
tn

, p̃
π,l,j
tn

; θlu);

9: x̃
π,l,j
tn+1

= x̃
π,l,j
tn

+ b(tn, x̃
π,l,j
tn

, ũ
π,l,j
tn

)∆tn + c(tn, x̃
π,l,j
tn

, ũ
π,l,j
tn

)∆Btn +
∑dNtn

k=1 γ(tn, x̃
π,l,j
tn

, ũ
π,l,j
tn

,∆Ln
k )

−
∫
Rn\{0}

γ(tn, x̃
π,l,j
tn

, ũ
π,l,j
tn

, z)µ(dz)∆tn;

10: p̃
π,l,j
tn+1

= p̃
π,l,j
tn

− ∇xH(tn, x̃
π,l,j
tn

, ũ
π,l,j
tn

, p̃
π,l,j
tn

, q̃
π,l,j
tn

, r̃
π,l,j
tn

)∆tn + q̃
π,l,j
tn

∆Btn + r̃
π,l,j
tn

∑dNtn

k=1 ∆Ln
k

−λr̃π,l,jtn

∑dNtn

k=1 E(∆Ln
k )∆tn;

11: H = H +
(
∇uH(tn, x̃

π,l,j
tn

, ũ
π,l,j
tn

, p̃
π,l,j
tn

, q̃
π,l,j
tn

, r̃
π,l,j
tn

)
)2

;

12: loss = 1
M

∑M
j=1

[
(p̃π,l,jtN

−∇xg(x̃
π,l,j
tN

))2 + αH
]
;

13: J(ũπ,l) = 1
M

∑M

j=1

[
T
N

∑N−1
n=0 f(tn, x̃

π,l,j
tn

, ũ
π,l,j
tn

) + h(x̃π,l,jtN
)
]
;

14: (θl+1
q ; θl+1

u ; θl+1
r ; p̃π,l+1

0 ) = (θlq; θ
l
u; θ

l
r; p̃

π,l
0 )− η∇loss;

4. Numerical results

In this section, we will test our algorithms on a mean-variance portfolio selection problem in a financial
market with two different assets: one risky asset priced at P1 and one risk-free asset priced at P0. Given
that the market is self-financing, i.e., a small change in the wealth process xt is necessarily due to a
change in P0 or P1. The problem consists of

sup
v∈A

E
[
−1

2(xT − a)2
]

subject to

dxt = (αtxt + (βt − αt)vt) dt+ kt vt dBt + v(t−)

∫

R\{0}
γ1(t, z) L̃(dt, dz), (13)

where x0 ∈ R is known and a = E[xT ] the expected wealth at the terminal time T . Bt and L̃(dt, dz)
represent, respectively, a Brownian motion and a compensated random Poisson measure.

The control vt = xt−P0π0 is the amount invested in the risky asset at instant t. Here π0 represents
the number of units invested in the free asset. βt (resp. αt) is the expected return of the risky asset
(resp. of the risk-free asset). However, the term ktvtdBt models continuous movements in the price
of the risky asset due to Brownian motion and the last term vt−

∫
R\{0} γ1(t, z)L̃(dt, dz) represents the

jump component, which models discontinuous movements in the price of the risky asset due to jumps.
This problem can be viewed as special case of our initial problem, where

f(t, xt, ut) = 0, g(x) = −1
2(x− a)2,

b(t, xt, vt) = αtxt + (βt − αt)vt, σ(t, xt, vt) = ktvt, γ(t, xt, vt, z) = v(t−)γ1(t, z).

We suppose that t ←→
∫
R\{0} γ

2
1(t, z)µ(dz) is locally bounded. vt is admissible control and we

write vt ∈ A if xt = xvt is the solution of (13) and E[(xvT )
2] < ∞. The investor aims to determine

vt ∈ A that maximizes the objective function

J(vt) = E

[
−1

2 (xT − a)
2
]
.
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It is well known that this problem, even in the case of a single risky asset, does not admit a closed
form analytical solution. A semi-analytical solution exists only under highly restrictive and simplified
assumptions. In what follows, we address the problem using both algorithms and compare the numerical
results with those obtained from the semi-analytical method provided by by Sulem et al. in [21]. This
semi-analytical solution is provided by the following set of formulas,

v∗t =
(αt − βt)(ϕtxt + ψt)

ϕtΓt
,

such that

ϕt = − exp

(∫ T

t

(
(αs − βs)2

1

Γs
− 2αs

)
ds

)
, 0 6 t 6 T,

ψt = a exp

(∫ T

t

(
(αs − βs)2

1

Γs
− αs

)
ds

)
, 0 6 t 6 T,

Γt = k2t +

∫

R\{0}
γ21(t, z)µ(dz).

As a first step for solving the problem using our approach, we provide the Hamiltonian and the
corresponding adjoint process associated with this problem. The Hamiltonian H gets the form

H(t, x, v, p, q, r) =
(
αtx+ (βt − αt) v

)
p+ kt v q + v

∫

R\{0}
γ1(t, z) rt(z)µ(dz).

And, the adjoint equations is

dpt = −αt pt dt+ qt dBt +

∫

R\{0}
rt(z) L̂(dt, dz), t < T,

pT = −(xT − a).
So, the variational problem associated to the algorithm 1 is

inf
p0,qt,rt

E

[∣∣(xp0,q,rT − a) + p
p0,q,r
T

∣∣2
]

(14)

subject to



x
p0,q,r
t = x0 +

∫ t

0

(
αsx

p0,q,r
s + (βs − αs)v

p0,q,r
s

)
ds+

∫ t

0
ksv

p0,q,r
s dBs +

∫ t

0

∫

R\{0}
vp0,q,rs γ1(s, z) L̃(ds, dz),

p
p0,q,r
t = p0 −

∫ t

0
αs p

p0,q,r
s ds+

∫ t

0
qs dBs +

∫ t

0

∫

R\{0}
rt(z) L̃(ds, dz),

v
p0,q,r
t = argmaxv∈UH(t, xp0,q,rt , v, p

p0,q,r
t , qt, rt(·)) ∀t.

The following table shows the optimal value of J(v∗) obtained by Algorithm 1, along with the relative
error compared to the semi-analytical method, for different iterations: MaxIter = 1000, 3000, and
5000.

Table 1. The value of J(v∗) obtained by algorithm 1 and by the semi-analytical method

Results ALg1 Analy Method ALg1 Analy Method ALg1 Analy Method
J(v∗) −0.009725 −0.012001 −0.01051 −0.01187 −0.010863 −0.01198
Iterations 1000 — 3000 — 5000 —
Relative Error 2.276× 10−3 2.276× 10−3 1.36× 10−3 1.36× 10−3 1.12× 10−3 1.12× 10−3

Time (s) 2420 — 3100 — 3524 —

To compare the two solutions one obtained using our approach based on Algorithm 1 and the other
using the semi-analytical method, we plot the evolution of Jalg1 and Janaly over the iterations (see
Figure 2).

We also plot the evolution of the mean of xT over the iterations to observe its behavior with respect
to the target value a (see Figure 3).
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Figure 2. The evolution of Jalg1 and Janaly over the iterations. Figure 3. The evolution of the mean of xT
relative to the target a over the iterations.

And for ensuring the convergence of our algorithm, we plotted the loss function against the number
of iterations (see Figure 4).
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Figure 4. The loss function of Algorithm 1 against the number of iterations.

It is clear that this method is convergent and provides results with an accuracy on the order of 10−3.
Now, we solve this problem using Algorithm 2. This will require 3 neural networks instead of 2, but

it allows us to avoid computing the argmax function, which is computationally expensive. However,
this also involves a change in the loss function, making it in the form

1

M

M∑

j=1

[
(
p̃
π,l,j
T +

(
x
π,l,j
T − a

))2
+ η

N−1∑

n=0

(∇vH)2

]
, (15)

where η is a hyperparameter.
The following table presents the values of J(v∗) obtained using Algorithm 2, along with the relative

error compared to the semi-analytical method, for different iterations: MaxIter = 1000, 3000, and 5000.

Table 2. J(v∗) obtained using Algorithm 2, along with the relative
error compared to the semi-analytical method for different iterations.

Results ALg2 Analy Method ALg2 Analy Method ALg2 Analy Method
J(v∗) −0.012287 −0.011561 −0.01203 −0.01155 −0.01192 −0.01147
Iterations 1000 — 3000 — 5000 —
Relativ Error 7.26× 10−4 7.26× 10−4 6.3× 10−4 6.3× 10−4 4.5× 10−4 4.5× 10−4

Time (s) 840 — 1260 — 1680 —

To compare the two solutions obtained by our approach based on Algorithm 2 and the semi-
analytical method, we plot the evolution of Jalg2 and Janaly over the iterations (see Figure 5).
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Figure 5. The evolution of Jalg2 and Janaly over the iterations. Figure 6. The behavior of E[xT ] with
respect to the target value a over itera-

tions.

We have also ensured the convergence of the second algorithm and plotted the evolution of the
mean of xT over the iterations to observe its behavior with respect to the target value a; see Figures 7
and 6, respectively.
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Figure 7. The loss function for Algorithm 2 over iterations.

5. Conclusion

In this work, we have proposed two algorithms to solve a stochastic optimal control problem driven by
a diffusion process. We validated our approaches through a financial case study specifically, the mean-
variance portfolio selection problem, where the wealth process is modeled by a backward stochastic
differential equation (FBSDE) with jumps. This problem does not admit a fully analytical solution,
but only a semi-analytical one based on simplifications and approximations.

Our approach relies on deep neural networks combined with the Stochastic Pontryagin Maximum
Principle. Numerical results show that our methods converge toward the semi-analytical solution of
the problem. For comparison, we observed that Algorithm 2 is more stable and converges faster than
Algorithm 1. The relative error for Algorithm 1 is on the order of 10−3, while for Algorithm 2 it
reaches 10−4. This improvement is attributed to the fact that Algorithm 1 requires solving an argmax
optimisation problem, which, in our case, involves an additional auxiliary algorithm (FBGS algorithm).

In conclusion, Algorithm 2 is preferable when the conditions stated in Section 3.2 are met. However,
Algorithm 1 remains a valuable alternative, especially for this type of control problem involving jumps
and multiple financial assets, where analytical methods are not available.
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Новий пiдхiд до розв’язання стохастичної задачi керування,
що визначається дифузiйним процесом зi стрибками

Ульгазi Г.

Лабораторiя IMIA, команда A2MSDS, кафедра математики, факультет наук i технiки,
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Стаття зосереджена на чисельному розв’язаннi багатовимiрних задач оптимального
стохастичного керування, стани систем в яких моделюються як процеси дифузiї зi
стрибками. Використовуючи принцип максимуму та глибокi нейроннi мережi, пере-
формульовано вихiдну задачу керування як варiацiйну задачу та впроваджено спе-
цiалiзованi алгоритми для розв’язання цього нового формулювання. Представлено
самi алгоритми, а також рiзнi архiтектури, що були застосованi. Задача вибору порт-
феля за критерiєм “середнє–дисперсiя” на фiнансовому ринку, що складається з двох
видiв активiв у межах процесу дифузiї зi стрибками, пiдтверджує ефективнiсть за-
пропонованих алгоритмiв.
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