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Healthy diets can slow disease progression, but their effectiveness may decrease. Patients
often give up these diets due to limited food choices, unappetizing meals, and reduced
physical activity from cutting calories. To address this, we developed an intelligent nutri-
tional balance system to prevent cardio-diabetic diseases. This system creates diets that
optimize cholesterol and glycemic control through the following steps: (a) Characterizing
Moroccan foods based on 19 nutrients and their glycemic load, (b) Classifying foods us-
ing a Gaussian mixture model, (c) Modeling the optimal diet with a fuzzy mathematical
model using recommendations from the WHO, USDA, and FAO, (d) Solving the model
with a genetic algorithm, (e) Translating portions and food groups to meet constraints,
and (f) Resolving the final model using the backtracking method. We implemented this
strategy based on the main foods consumed in Morocco, considering different levels of be-
lief (0.25, 0.5, 0.75) regarding the glycemic load of these foods. The results show that the
custom artificial diets align with WHO, USDA, FAO, and DGA recommendations. The
menus are flexible, allowing for substituting expensive or rare foods with more affordable
and readily available alternatives without compromising the quality of the diets.
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glycemic load; total cholesterol; Genetic Algorithm (GA); Fuzzy Optimization Program-
ming (FOP); Constraint Satisfaction Programming (CSP).
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1. Introduction

Malnutrition significantly increases the risk of chronic diseases such as hypertension, hypercholes-
terolemia, diabetes, lipid abnormalities, obesity, heart disease, and cancer [1]. The World Health
Organization (WHO) has estimated that around 2.7 million deaths are attributable to poor eating
habits [2]. Globally, these types of diets are responsible for about 19% of gastrointestinal cancers, 31%
of ischemic heart diseases, and 11% of strokes [3], which makes it an important source of preventable
mortality [4] and the fourth most threatening contributor to all diseases [5]. Although most healthy
diets slow down the progression of the disease, various factors can undermine their long-term effective-
ness [6]. Some patients do not stick to their diet from the start, while others give it up after a while
because it is too restrictive or the food just is not appealing [7]. Others are less active because they
consume fewer calories [8].
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Dyslipidemia refers to an imbalance of lipids in the blood and is often associated with type 2
diabetes, obesity, and a sedentary lifestyle. It is a significant risk factor for cardiovascular diseases,
making it a crucial target for preventing complications related to diabetes and heart diseases [9].
Numerous studies indicate that dietary glycemic load (GL) influences glucose metabolism and lipid
profiles. Elevated GL levels are commonly associated with an increase in blood lipids, particularly
total cholesterol (TC) [10–12]. Low glycemic load diets, which are high in fiber and healthy fats,
enhance metabolic health and lipid profiles. The American Heart Association (2021) [13] recommends
managing and reducing cholesterol through a healthy diet, regular exercise, and understanding its role
in cardiovascular disease.

The article discusses a personalized meal plan created using unsupervised learning, genetic algo-
rithms, fuzzy quadratic programming, and constraint satisfaction programming. This approach aims
to better manage diabetes and improve cardiometabolic health by optimizing the glycemic load and
total cholesterol levels in the diet. Over time, many scientists have been interested in estimating the
best diet. Stigler and Danzig were the first researchers to turn this problem into an optimization
model that considers daily nutrient needs and the minimum cost of the diet [14]. Considerable atten-
tion has been given to the inadequacy of Stigler’s minimum subsistence diets regarding palatability,
variety, and overall adequacy [8]. In 2015, the creators of [15] developed a combined model that in-
corporates various meals (regular meals, a snack, and a serving of fruit) using penalty methods. This
investigation examined a weekly vegan meal plan using various food composition databases (FCDBs).
The performance of computer-planned meals strongly depends on the FCDB quality. G. Masset’s
team [16] aimed to minimize nutrient deficiencies, considering dialysis recommendations, as meeting
daily nutrient requirements complicates mathematical modeling. For disadvantaged groups, such as
diabetic patients, this model might lead to undesirable changes in dietary habits. Follow-up studies
have proposed alternative feeding schedules and affordable meal options for young children [17]. Sev-
eral weaknesses should be noted. Firstly, the nutritional restrictions exclude micronutrients such as
vitamins. Secondly, the model overlooks cultural and traditional factors significantly affecting food
preferences, impacting the study’s realism. In [18], the authors used linear optimization to create meat
alternatives that have similar nutritional value while reducing their environmental impact in terms of
climate variability, land use, water, and fossil fuel depletion. They mainly focused on protein quality
and essential amino acid ratios, sometimes at the expense of other nutrients and food characteristics
such as calories, carbohydrates, potassium, magnesium, dietary fiber, calcium, iron, phosphorus, zinc,
and vitamins B6, B12, C, A, and E, as well as glycemic load. In [20], the authors presented a trade-off
technique for dietary linear programming that balances two linear objectives without needing prior
consumer input. This bi-objective algorithm is based on the non-inferior set estimation method, iden-
tifying all efficient trade-offs between the objectives. The fact that the authors allow some flexibility, it
is possible that for certain nutrients the level of deficiency or excess is unacceptable from a health point
of view. Furthermore, the glycemic load of the diets is not controlled. Robust programming has been
used to address the variability of food parameters when modeling nutritional issues. This approach
considers the maximum deviations from the average glycemic load of foods, converting the parameters
of stochastic optimization models into real values [21]. However, this leads to complex mathematical
models that are challenging to solve due to their large dimensions. In [22, 23], the authors utilized
triangular fuzzy ranking functions to estimate the nominal values of food knowledge, and a hybrid
local search was employed to solve the mathematical model. To accurately depict the daily nutritional
requirements, the authors of [24,25] Implemented an automatic system utilizing a deep neural network,
which generated extensive data sets based on the recommendations of nutrition experts. Optimal diets
were created for various case studies [26–28]. The diets generated by these models are too restrictive
and may impose some unappealing foods, causing their abandonment, and they take into account a
standard list of daily dietary nutrient requirements. Unfortunately, these models offer limited options
to users and a small substitution that can affect the dietary balance.

In short, deterministic programming cannot capture all knowledge about food, which is stochastic,
and this kind of representation is difficult to apply and almost impossible to extend when the context
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changes [14, 38, 61–63]. Robust programming provides a good representation of this knowledge, but it
causes an explosion in the size of the optimal diet problem [21,24,25]. In addition, manual substitution
(aiming at diet customization), in an optimal diet, causes disturbances in the dietary balance ensured
by the models, obtained by translating the WHO, USDA, FAO, and DGA recommendations in terms
of equations [2, 29], because it is difficult for a human being to take into account the constraints of
over 20 nutrients when making different substitutions [14–18, 38]. Being able to form groups, either
manually or by clustering methods, the consumer needs automated assistance that suggests real diets
that are suitable for him (compatible with his taste, habits and traditions) and that adhere the WHO,
USDA, FAO, and DGA recommendations [2, 29]; all the solutions proposed so far do not offer this
possibility [19–23,34, 35].

To overcome these problems, we introduce an intelligent system to build optimal and personalized
dietary menus to encourage Moroccan patients, who suffer from a permanent disease, to maintain their
diet to avoid entering complicated stages of the disease. Fuzzy optimization programming allows for a
comprehensive capture of stochastic knowledge about food. Furthermore, transforming the fuzzy model
based on ranking functions resulted in problems of the same size as the initial problem. Additionally,
quantifying degrees of belief enabled, the preservation of knowledge [22, 23]. Food grouping via soft
clustering methods enables real-time substitutions without disrupting diet balance, considering all
nutrients simultaneously [30, 31, 58]. Optimal grouping, followed by an optimal diet estimate, and
implementing CSPs, is a valuable solution that can be used to help consumers design their dietary
plan [54,55]. To build our system, we follow a five-step process. First, we decompose the data set of the
foods we are considering into the optimal number of groups based on well-known criteria. In the second
step, we introduce the centers of these groups, which we call artificial foods, into a fuzzy mathematical
optimization model. This model represents daily nutrient requirements as well as recommendations
from WHO, USDA, FAO, and DGA as linear constraints [2,29], and glycemic load is represented using
fuzzy triangular number [37]. In step 3, Genetic algorithms are utilized to determine optimal serving
sizes for each artificial food, creating an optimal artificial diet [22]. In step 4, the nutritional menu
is created using the groups generated in step 1, and the serving sizes are determined in step 3. In
step 5, the menu is converted into a constraint satisfaction programming model to help users select
personalized diets. This model is then solved using the logic programming environment PROLOG [36].
The proposed dietary system was applied to 171 Moroccan foods, demonstrating its feasibility and
ability to generate balanced diets. The other parts of this article are organized as follows: Section 2
presents the methodology; Section 3 describes the intelligent tool models used; Section 4 covers the
fuzzy mathematical models and the proposed constraint satisfaction problems (CSP); Section 5 reviews
the experimental results; and Section 6 concludes with future directions.

2. Methodology review

In this project, we developed a smart system that creates personalized and optimal dietary plans to
help Moroccan patients with chronic diseases maintain their health and avoid complications. Our
approach involves several steps organized into three main components: input, treatment, performance
measures, and output.

Data collection: In this step, we list the main consumed foods in Morocco. Then, we characterize
these foods based on 19 aliments and the glycemic load.

Fuzzy representation of the glycemic load: in this step, transform the (min-GL, max-GL,
mean-GL) of each food in terms of trapezoidal membership function by selecting adequate threshold.

Optimal numbers of groups: In this step, we select the optimal number of clusters that cover
the food data set. Then, we use several fuzzy clustering methods to cluster the set of foods. In this
sense, we maintain the food groups and the centers (artificial foods) produced by the most performance
clustering method, fuzzy means, based on silhouette criterion.

Modeling the optimal artificial diet: In this step, we model the optimal artificial diet in terms
of a constrained optimization model. The objective function incorporates both the glycemic load and
total cholesterol of the diet, which aids in lowering the risk of diabetes and enhancing the lipid profile.
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The constraints adhere to guidelines provided by the WHO, USDA, FAO, and DGA. We then utilize
a genetic algorithm to identify the optimal portion sizes.

Transforming glycemic membership functions: In this step, we use an appropriate ranking
function to transform the glycemic membership function into crisp values for different degrees of belief.

Building the diet menu: In this step, we build an optimal diet menu using the food groups
produced by the Gaussian Mixture Model(GMM) and the serving sizes produced by the genetic algo-
rithm.

Producing optimal real diets: in this step, the menu diet is modeled in terms of a satisfaction
constraint model: the variables indicate the number of units used of each food, the constraints indicate
the serving sizes associated with each group, and the domains provide min, max and intermediate
tolerability to use from each food. We solve the resulting model using the backtracking algorithm.

Data Collection

Food Clustering

Fuzzy Representation
of Glycemic Load

Optimal Modeling
of Artificial Diet

Customized Diet

Optimal Diet Menu

Logic Programming
Genetic Optimizer

Optimal modeling of artificial diet.
Min: Total glycemic load + Total cholesterol
Subject to (ST):
Nutrient requirements
WHO recommendations

Poor Fair Good Very Good Excellent

1.2%

7.8%

30.2%

37.3%

23.5%

Figure 1. Personalized diet optimization using modeling techniques, genetic algorithms, and the minimization
of glycemic load and cholesterol.

Figure 1 provides the architecture of the proposed system; the process starts with data collection
and finishes by producing several real diets.

3. Smart tools

3.1. Knowledge representation: fuzzy ranking function

Several factors influence the glycemic value of foods, including cooking method and maturity [39]. To
handle the stochastic value of the glycemic load of different foods, we utilize fuzzy triangular numbers.
Consider three real numbers 0 6 l 6 m 6 u, a triangular membership function is denoted by µ∆ and
is defined as follows [23] and [22]:

µ∆(x) =





x−l
m−l

, l 6 x 6 m,
u−x
u−m

, m 6 x 6 u,

0, otherwise.

(1)
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Based on each element ∆ = (l,m, u), from the set STFN = {(l,m, u) | l 6 m 6 u}, we can define a
distinct triangular membership function µ∆. STFN It is called the set of triangular fuzzy numbers
and an element from this set is named a triangular fuzzy number. The most important arithmetic and
logic operations on the set of triangular fuzzy numbers are defined [22] and [23]. A function f , defined
on STFN , is said to be increasing if and only if f(∆) 6 f(∆′) once ∆ 6 ∆′, ∀∆,∆′ ∈ STFN , and
in this case f is called a ranking function. The membership function determines the extent to which
an element belongs to the range between the two extreme values of a triangular number. To convert
a triangular number into a precise value, it is necessary to traverse the range of potential values that
make up the context. This is achieved by using the inverse of two functions known as the left and right
membership functions, which correspond to the membership functions [37]. For a triangular number
∆ = (l,m, u), let L∆(x) =

x−l
m−l

and R∆(x) =
u−x
u−m

be the left and the right, function of ∆, respectively.

The inverse functions of L∆ and R∆ are defined by L−1
∆ (x) = l+(m− l)x and R−1

∆ (x) = m+(u−m)x.
As a randomly drawn element of the discourse space can take any value of the interval [l, u] with
different degrees when considering the two intervals [l,m] and [m,u], a reasonable crisp value must be
a value realizing a compromise between these two intervals while considering the possible positions on
these intervals:

Rθ(∆) = θ

∫ 1

0
L−1
∆ (y) dy + (1− θ)

∫ 1

0
R−1

∆ (y) dy =
θ l +m+ (1− θ)u

2
.

θ quantifies the degree of belief of fuzzy value detection over the interval [l,m]. If we believe, at θ%, that
the fuzzy value of an individual from the space discourse, described by ∆ = (l,m, u), is on the left of the

central value m, the ranking function traduces (quantifies) this information by Rθ(∆) = θ l+m+(1−θ) u
2 .

Table 1. Crisp equations for different degrees of belief of fuzzy glycemic load.

Degree of belief θ 0% 25% 75% 95% 100%

Rθ(GLi)
mi + ui

2

li + 4mi + 3ui

8

3li + 4mi + ui

8

19li + 20mi + ui

2

li +mi

2

Degrees of belief of fuzzy glycemic load
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Figure 2. Bananas and rice GL evolution for
different values of the degree of belief.

Table 1 gives the crisp values associated with
five degrees of belief of fuzzy glycemic load (GL)
of a food i detection over the interval [li,mi].
Figure 2 shows the evolution of the GL (degree
of belief) for bananas and rice for different val-
ues of the degree of belief GL within [li,mi].
The ranking function of rice is higher than that
of bananas for every value of the degree of belief.

3.2. Soft clustering methods

This section presents the principles of Gaussian
mixture models and fuzzy K-means. We show
that both methods preserve the order between
the characteristics of the data studied; the inter-
est of these results is that the foods studied in
this work contain three columns entitled min-
load glycemic, mean-load glycemic, and max-
load glycemic of the different foods. Since our
strategy constructs artificial foods, which summarize real foods, by grouping methods, the columns
corresponding to the artificial foods’ glycemic load should pass from smaller to larger.

3.2.1. Gaussian mixture models

To obtain the probabilistic version of K-means, it is assumed that the observations of the learning set
B = {f1, . . . , fN} are the realizations of a random variable whose density function is a mixture of K
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normal distributions:

p(z) =
K∑

c=1

αcφc(z),

where
∑K

c=1 αc = 1, and φc is the normal density function.
In addition to this formalism, the shift to the probabilistic interpretation of the K-means algorithm

requires the introduction of additional assumptions:

— the prior probabilities αc are all equal to 1/K;
— the K normal functions φc have identical variance-covariance matrices, equal to σ2I, where I

represents the unit matrix and σ is the standard deviation considered constant for all these normal
distributions.

In this case, the density function has the expression:

φc(f) =
1

(2π)
n
2 σn

exp

(
−
‖f − wc‖

2

2σ2

)
.

The K-means probabilistic version consists of esteeming the vectors wc and the typical standard
deviation σ trying to realize the sample as much as possible. This method, known as the maximum
likelihood method, consists of maximizing the probability p(f1, . . . , fN ) of these observations. If pc,i,
estimated using an Algorithm [30] and [31], is the probability that the sample fi is in the cluster c and
fi1 , . . . , fi|c| are the samples estimated to be from the cluster c, where |c| is the number of the elements
of this cluster, then

wc =

∑|c|
k=1 pc,ik × fik∑|c|

k=1 pc,ik

.

Theorem 1. If j is a cluster, whose center is estimated by the equation

wc =

∑|c|
k=1 pc,ik × fik∑|c|

k=1 pc,ik

,

and p and q are two coordinates such that fi,p 6 fi,q for each sample i, then wc,p 6 wc,q for all
c = 1, . . . ,K.

Proof. We have

wc,p =

∑|c|
k=1 pc,ik × fik,p∑|c|

k=1 pc,ik

and wc,q =

∑|c|
k=1 pc,ik × fik,q∑|c|

k=1 pc,ik

.

As fik,p 6 fik,q for each ik and 0 6 pc,ik 6 1, then
∑|c|

k=1 pc,ik × fik,p∑|c|
k=1 pc,ik

6

∑|c|
k=1 pc,ik × fik,q∑|c|

k=1 pc,ik

.

Thus,

wc,p =

∑|c|
k=1 pc,ik × fik,p∑|c|

k=1 pc,ik

6

∑|c|
k=1 pc,ik × fik,q∑|c|

k=1 pc,ik

= wc,q,

that is, GMM preserves the order of features. �

3.2.2. Fuzzy K-means

Fuzzy K-means is a soft clustering method that allows dividing N , non-labeled objects, described in
Rn, into K-groups. Unlike the hard methods, this method permits the objects to be in different groups,
at the same time, using membership functions [31]. To this end, the fuzzy K-means try to solve the
following optimization problem:

(FP ) : J(µ,w) =

N∑

i=1

K∑

c=1

µm
c,i‖zi − wc‖

2,
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where zi is the ith sample from Rn, m ∈]1,+∞[, µc,i informs us how much the sample zi is in the group
c, and wc is the center of the cth cluster.

Fuzzy K-means process in iterative optimization of the problem FP:
(a) ∀i and ∀c, µm,0

c,i and w0
c are randomly chosen;

(b) At the iteration k, ∀i and ∀j, µm,k
c,i and wk

c are known and µm,k+1
c,i and wk+1

c are calculated using
the following learning equations:

µm,k+1
c,i =

(
K∑

a=1

(
|zi −wk

c |

|zi −wk
a |

) 2

m−1

)−1

, wk+1
c =

(
N∑

q=1

µm,k
c,q zq

)(
N∑

q=1

µm,k
c,q

)−1

;

(c) return to (b) until max
i,c
|µm,k+1

c,i − µm,k
c,i | 6 ε, where ε is a very small non-negative real number.

In our case, the glycemic load is presented by three values min, mean, and max. Each center wc

must satisfy the constraints wc,19 6 wc,20 6 wc,21 that we called Glycemic Load Constraints (GLC).

Theorem 2. If c is a cluster, whose center wc is estimated by the first equation in (b), and p and q
are two coordinates such that zi,p 6 zi,q for each sample i, then wc,p 6 wc,q.

Proof. The demonstration is similar to that of Theorem 1: simply replace the probability of member-
ship pc,i by the degree of membership µc,i. �

Notes:

(a) The centers calculated by the K-means are the arithmetic averages of the groups [33]; in this way,
the K-means preserve the order between the characteristics.
(b) The centers produced by K-medoids are selected from the dataset studied [40]; in this way, K-
medoids preserves the order between features.

3.3. Genetic algorithm

The genetic algorithm (GA) is a global search optimization process that imitates the mechanisms of
natural evolution, based on the reproduction and survival of the most successful individuals [41]. In
GA, individual solutions progress iteratively through genetic transactions like selection, crossover, and
mutation. Solutions are scored using the fitness function. The new top solutions substitute for the
former bad ones in the succeeding generations:
Initialization: the first generation is performed randomly, allowing to cover the wide spectrum of all
possible solutions [19, 41, 42, 49]. Occasionally, solutions may be segregated into regions in which the
best solutions can likely be reached.
Fitness function: To create an appropriate fitness function, it is important to adopt many good
practices [43, 44]:
(a) Simplicity: The fitness function needs to be as uncomplicated as possible, capturing the most
relevant features of the problem area.
(b) Reproducibility: Check that the fitness function delivers consistent output on different executions.
(c) Iterative Development: Begin by using a simple fitness function, and progressively introduce com-
plexity as necessary.

The most commonly used formula is given by:

Fitness = (weight) ∗ (The objective function of the problem)− penalty for each constraint infringed.

Selection: In each following generation, a subset of the surviving population is screened to breed
a newer generation [50, 51]. The main screening techniques include roulette wheel selection, rank
selection, steady state selection, tournament selection, elitism selection, and Boltzmann selection.

In our case, we use a stochastic uniform selection algorithm, which draws a line in which each
parent corresponds to a section of the length line proportional to its scale value. The algorithm moves
along the line in steps of equal size. At each step, the algorithm assigns a parent to the section it is
on.
Step 1: random step size selection (e.g. 1);
Step 2: random starting number selection (e.g. 0.5);
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Step 3: location online (e.g. 0.5, 1.5, 2.5, 3.5).
Parents whose proportions match the generated sections will be selected.

Crossover: is a genetic process that aims to merge the DNA data of two individuals to breed a
new child [52].

In our case, we use multiple crossovers, applied to 80% of the population with a given ratio (R).
Given two parents parent1 and parent2, a child child is obtained by child = parent1 + rand ∗ R ∗
(parent2 − parent1), where rand is a random real number from [0 1].

Mutation: This operator creates a kind of diversity in the population that helps to avoid bad local
minima. There are several types of mutation (for example, uniform mutation, Gaussian mutation, and
heuristic mutation); to avoid a random search, we use a small mutation ratio [53]. In our case, we use
heuristic mutation, which is carried out in two steps:
Step 1: selection of the input to be mutated;
Step 2: selection of the best neighbors of the individual to be mutated, taking into account all possible
mutations.

As such selection can be a difficult optimization problem, we use the heuristic method.
Algorithm 1 gives the kernel version of the genetic algorithm.

Algorithm 1 Genetic algorithm.

Require: constraints, objective function
Ensure: local optimal solution

Set of parameters
Choose encode method % real coding
Generate the initial population % random
while i < MaxIter( % MaxIter=100*number_foods) and BestF itn < MaxFitn

Fitness calculation
Selection % selection function=stochastic (uniform)
Crossover % multiple with ratio=0.8
Mutation % heuristic with ratio=0.1

Decode the individual with maximum fitness
Return the best solution

Exploration and exploitation: In the genetic algorithm (GA), exploration and exploitation are
performed through selection, mutation, and crossover. Selection orients the search to regions with the
most promising individuals [45]. In GA, mutation is rather an exploration tool, as it enables us to
discover new areas [46]. Crossover can be seen as an exchange of information between a good solution;
so a crossover operator is an exploitation operator [47]. In addition, it is also possible to orientate an
evolutionary process in the direction of exploration or exploitation by rescaling the population [48].
With a larger population, the search field is explored to a greater extent than with a smaller population.

Because of its advantages (exploration of search space, flexibility, adaptability, parallel processing,
and global optimization), a genetic algorithm is used, in this work, to estimate the artificial optimal
diet [19, 41–43,49].

3.4. Backtracking algorithm

The backtracking algorithm lists a set of partial solutions which, in principle, may be filled out in
various manners to provide all potential answers to the given constraints satisfaction problem. A
sequence of incremental candidate expansion phases achieves this. Partial candidates are mapped as
nodes of the potential search tree. Every partial candidate is the parent of candidates that differ
from it by a unique expansion level; the tree branches are the partial candidates that are no longer
expandable.

The backtracking procedure recursively moves through this spanning tree, starting from the top
and proceeding downwards, in in-depth order. At every node s, the approach verifies if s can be filled
with a correct answer [54]. If not, the complete subtree rooted at s is jumped. If not, the algorithm
checks if s itself is a valid completion, and, if so, reports this to the user; and recursively lists all the
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subtrees of s. The two tests and the children of every node are determined by the customer, who
defines the procedures.

Algorithm 2 Backtracking algorithm.

Require: I: instance to be solved
Ensure: feasible solution

procedure backtracking(I, s) is
if reject(I, s) then return
if accept(I, s) then output(I, s)
fs ← first(I, s)
while s 6= null do

backtracking(I, fs)
s ← next(I, fs)

Given a particular case I of the problem to be solved, six functions are defined: root(I) [returns the
partial solution from the root of the tree search], reject(I, s) [will only return true if partial applicant s
is not worth filling in], accept(I, s) [returns true if it is a feasible solution of I, and false when it is not],
first(I, s) [creates the first expansion of applicant s], next(I, s) [creates the subsequent alternating
expansion of a candidate, after the s expansion] and output(I) [uses feasible solution fs of I, about
the desired application] [55].

Algorithm 2 gives the kernel version of the backtracking algorithm.

4. Artificial diet problem modeling

In this section, we will outline the steps for creating an optimal dietary menu using GMM, fuzzy
mathematical optimization models, and Constraint Satisfaction Programming (CSP).

The following nutrients are considered positive (favorable): Calories (c), Protein (p), Carbohy-
drate (car), Potassium (po), Magnesium (mg), Dietary fiber (tdf), Calcium (ca), Iron (ir), Phosphorus
(ph), Zinc (z), and Vitamins B6 (Vb6), B12 (Vb12), C (Vc), A (Va), E (Ve). The negative (unfavor-
able) nutrients considered are saturated fatty acids (sf), Sodium, Cholesterol, and Fat (tf). The set
F = {f1, . . . , fN} represents a collection of foods described based on their favorable and unfavorable
nutrients, as well as their minimum, mean, and maximum glycemic load. For instance, the details of
apricot (f1) are outlined in Table 2 for a 100 g serving. It is important to note that this food has a
very low glycemic load.

Table 2. Description of the apricot based on favorable and
unfavorable nutrients and on the glycemic load of 100 g of apricot food.

Vitamin A Vitamin C Vitamin E Vitamin B6 Vitamin B12 Calcium Phosphorus

0 (mg/g) 5.5 (mg/g) 0.6 (mg/g) 0.1 (mg/g) 0 (mg/g) 15.6 (mg/g) 16.6 (mg/g)

Magnesium Potassium Iron Zinc Calories Protein Carbohydrate

8.7 (mg/g) 237 (mg/g) 0.3 (mg/g) 0.1 (mg/g) 49 (mg/g) 0.9 (mg/g) 9 (mg/g)

Sodium Lipides Cholesterol Fat Min GL Mean GL Max GL

1 (mg/g) 0.39 (mg/g) 0.1 (mg/g) 0.027 (mg/g) 5.13 5.13 5.13

The daily requirements for positive nutrients and the minimum tolerable negative nutrient require-
ments are uncertain [24] and [25]. However, a rough estimate is utilized [21].

4.1. Grouping of the aliments

Let N represent the number of foods (in this case, N = 171). Initially, we examine various cluster
numbers and assess the following criterion [30]:
(a) Calinski–Harabasz index, named the Variance Ratio Criterion (VRC), which is defined by the
equation:

V RC(K) =
Ob

Ow

×
N −K

K − 1
,
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10 Bouhanch Z., Ahourag A., Lahbabi H., El Moutaouakil K., Ouzineb M., Cheggour M., Chellak S., et al.

where Ob and Ow are, respectively, the overall between and within cluster variance;
(b) Davies–Bouldin criterion defined by the equation:

DB(K) =
1

K

K∑

i=1

sup
p 6=q

dp,q,

where dp,q is the within-to-between groups distance ratio for the pth and qth groups;
(c) Gap value defined by the equation:

Gap(K) = E{log(wK)} − log(wK),

where wK is the measure of diversity within clusters;
(d) Silhouette value: Suppose the data were divided into K groups by any technique, including GMM,
fuzzy K-means, K-medoids or K-means.
For the data entry point i ∈ Gp, let

A(i) =
1

|Gp| − 1

∑

z∈Gp,i 6=s

d(i, z) and B(i) = min
q 6=p

1

|Gq|

∑

z∈Gq

d(i, z).

If |Gp| > 1, then the silhouette of i is defined by the equation:

s(i) =
B(i)−A(i)

max{A(i), B(i)}
.

It should be noted that the larger the silhouette, the more similar the data is to the group to which it
was assigned.
(e) Total glycemic load of the optimal diet associated with the artificial foods obtained by GMM with
K as several clusters.
We use GMM to group the set of foods F = {f1, . . . , fN} into K groups, and each group is represented
with a center whose characteristics are estimated from the members of the group; we call the centers
В«artificial foods В» and we note them af1, . . . , afK .

Corollary 1. The vector of the 19th, 20th, 21th components of the matrix [af1; . . . ; afK ] are formed
by the minimum, mean, and maximum of glycemic load of the K artificial foods, respectively.

Indeed, for each food i, we have fi,19 6 fi,20 6 fi,21. Due to Theorem 1, given in subsection 3.2, we
have afi,19 6 afi,20 6 afi,21 because af1, . . . , afK are the centers produced by GMM, which preserves
the features order.

4.2. Optimal artificial diet

The goal of this problem is to find the best portion sizes s1, . . . , sK for artificial foods af1, . . . , afK
to meet both favorable and unfavorable nutritional requirements based on the recommendations of
the DGA (Dietetics and Nutrition), the WHO (World Health Organization), and the FAO (Food and
Agriculture Organization of the United Nations). The objective is to achieve an optimal balance
between total glycemic load and cholesterol levels. The issue of artificial feeding raises concerns about
unclear glycemic load values. Adding cholesterol can help balance the reduction in glycemic load and
manage blood lipids, thereby controlling major risk factors for cardiovascular diseases. Cholesterol is
an essential lipid for the body, measured during a lipid panel. It includes LDL cholesterol (low-density
lipoprotein), which can lead to fat deposits in the arteries and increase the risk of cardiovascular issues,
HDL cholesterol (high-density lipoprotein), which helps remove excess cholesterol, and triglycerides,
another type of fat in the blood linked to heart disease. Total cholesterol Tc is the sum of the different
types of cholesterol in the blood:

Tc = LDL + HDL +
Triglycerides

5
Monitoring various types of cholesterol is essential, as they are risk factors for cardiovascular diseases
(CVD). Elevated cholesterol levels, particularly low-density lipoproteins (LDL), are closely associated
with a higher risk of heart disease [13];
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(F̃AP ) :





min K̃
a Gt · s+ Tc · s.

Subject to:
K
a P · s > b,
K
a N · s 6 f,
K
a CT

i · s > ri(
K
a P t

c · s) i ∈ {car,p},
K
a CT

i · s 6 ri(
K
a P t

c · s) i ∈ {tf, sf},

s = (s1, . . . , sK)t > 0.

— K
a P : Matrix of positive nutrient values for the K artificial foods. In this case, the number of positive
nutrients is 14, and the number of foods is K.

— K
a N : Matrix of negative nutrient values for the K artificial foods. In this case, the number of
negative nutrients is 4, and the number of foods is K.

— b: Minimum required positive nutrients, represented by a vector of dimensions (14, 1).
— f : Maximum tolerable negative nutrients, represented by a vector of dimensions (4, 1).
— K

a Pc: Row vector corresponding to the calories from positive nutrients in the artificial foods.
— K

a Ci: Vector of calories from nutrient i (where i can be car, p, tf, sf) for the artificial foods.
— ri: Percentage of total calories from nutrient i, with specific values such as rp = 18%, rcar = 55%,

rsf = 7.8%, and rtf = 29%.

— K̃
a G: Matrix of trapezoidal glycemic load vectors generated for each food. For each artificial food
i, we have:

K̃
a Gi =

〈
K
a Gmin

i ,Ka Gaverage
i ,Ka Gmax

i

〉
.

— Tc: Function representing the total cholesterol for portions s of the artificial foods. Cholesterol
values are not subject to large variations and are therefore considered fixed in the model.

With a degree of confidence θ, the glycemic load of food i lies within the range [Ka Gmin
i ,Ka Gaverage

i ]. To
manage this uncertainty, we use triangular fuzzy numbers 3.1 to accurately estimate the fuzzy values
of the glycemic load as follows:

Ri

(
K
a Gi

)
=

θ · Ka Gmin
i + K

a Gaverage
i + (1− θ) · Ka Gmax

i

2
,

where K
a Gmin

i , K
a Gaverage

i , and K
a Gmax

i are the vector of minimum, mean, and maximum glycemic load
of artificial food i, respectively.

This transformation allows us to convert the fuzzy problem (F̃AP ) into a linear optimization
problem (FAP ):

(FAP ) :





min R
(
K
a G
)
· s+ Tc · s.

Subject to:
K
a P · s > b,
K
a N · s 6 f,
K
a CT

i · s > ri(
K
a P t

c · s) i ∈ {car, p},
K
a CT

i · s 6 ri(
K
a P t

c · s) i ∈ {tf, sf},

s = (s1, . . . , sK)t > 0.

(2)

4.3. Constraint satisfaction programming to real diets

To automate the selection of actual diets from the artificial diet, constraint programming can also be
used, which leads to the following constraint satisfaction programming model:

(CSP ) :

{ ∑mi

j=1 xi,j = soli, ∀i such that soli 6= 0,

xi,j ∈ domi, ∀i such that soli 6= 0,
(3)

where: i represents used artificial food; j denotes real food from the group represented by the used
artificial food i; mi is the number of foods from the group represented by the used artificial food i;
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soli is the number of optimal units required from the used artificial food i; xi,j is the number of units
used from the food j, of the group of the used artificial food i, by a real diet; domi is the set of values
that can be taken by the variable xi,j.

We will utilize logical programming in the PROLOG environment to solve the CSP model, imple-
menting the backtracking algorithm [36] as detailed in subsection 5.3.

5. Experimental results

5.1. Grouping of the aliments

In the beginning, we estimated the best number of food groups using five performance criteria:
Calinski–Harabasz, Davies–Bouldin, Gap, Silhouette, and Total Glycemic Load. We grouped the foods
using different numbers of clusters, evaluated each performance criterion, and selected the number of
clusters that optimized these criteria.
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Figure 3. Criterion values for varying numbers of clusters across different metrics.
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Figures 3a, 3b, 3c, 3d , 3e give different values of Calinski–Harabasz (big), Davies-Bouldin (small),
Gap (small), Silhouette (big), and Total glycemic load, respectively, for different values of the number
of clusters. The considered criteria are not optimal for the same number of clusters; thus we have to
select the number of groups that makes compromises between these criteria. The best grouping is the
ones associated with K = 43, K = 44, K = 45, and K = 47 because they release a compromise between
the considered criteria. We select K = 43 because it corresponds to max{silhuette(k)/k = 43, . . . , 57}
and min{TGL(k)/k = 43, . . . , 57}. In addition, a few clusters lead to an artificial optimal model with
a reasonable size, which diminishes the number of local minima. To choose the best clustering method,
we tested four clustering methods on the Moroccan food database: K-medoids [40], K-means [33],
fuzzy means [31], and GMM; as the degree of compatibility between foods of the same group is of most
importance to us in this work, we have compared these groupings based on the silhouette criterion.

Table 3. Silhouettes of different clustering methods.

Clustering Method K-medoids K-means Fuzzy K-means GMM

Silhouette 13.2340 8.2421 15.9132 52.2212

Table 3 gives the values of silhouette of the four data sets applied to Moroccan foods. We remark
that GMM has the biggest silhouette (52.2212) followed by fuzzy K-means (15.9132). Thus, applied to
Moroccan foods, GMM produces a very homogeneous group compared to the other clustering methods.
To point out the homogeneity of the different groups produced by the four clustering methods, we give
the detailed silhouette of each method applied to Moroccan foods (see Figures 6a, 6b, 6c, and 6d).
Almost all the groups produced by the methods: K-medoids [40], K-means [33], fuzzy K-means [31],
suffers from terrible heterogeneity, while almost all the groups produced by GMM are homogeneous
except for a few in the middle; this is because of the lack of correlation between food characteristics
(linked to different nutrients) (see Figure 14).

Note. There may be other, well-founded reasons for rejecting K-medoids and K-means:
(a) K-means is known by its sensitivity to initial conditions, inability to handle categorical data, and
efficiency on large datasets and high-dimensional data, which can cause non-stable diet menus [33];
(b) Final centers produced by K-medoids are real food [40]; however, one food can never faithfully
represent several other foods.

From now on, we will use GMM to group Moroccan foods and to build our smart diet menu.
Table 4 gives the groups obtained using GMM for K = 43. We remark that the majority groups

are 15, 19, 28, 31, 32, and 37. As some foods do not have the same level of glycemic load, and they are
from the same group, post-processing will be necessary, and we have to take into account the negative
nutrients and the glycemic load when selected foods are from the same group.

To study the degree of similarity between the food groups produced by GMM, we use Fisher’s
hypothesis test to estimate the probability that foods in the same group are similar to the center
(artificial food) of that group. Figure 4 gives the probability that the elements in each group are
similar to the artificial food representing that group. We note that, except clusters 17, 27, 39, 40, and
41, almost all clusters are homogeneous with a probability above 50%. This means that foods from
the same group can be substituted for each other in the food menu. In addition, heterogeneous groups
are not selected by the genetic algorithm for inclusion in the optimal menu.

Table 5 gives artificial foods obtained by GMM for K = 43. Cluster centers represent artificial
foods whose nutrient values are fuzzy averages of foods in the same groups. Table 5 gives a detailed
description of the 43 artificial foods obtained by the fuzzy means method based on positive nutrients,
negative nutrients, and glycemic load (minimum, average, and maximum). We noted that most foods
in the same group have the same type of glycemic load. In addition, the GMM has maintained the
order of the three columns, which virtually confirms the result shown in proposition order GL. The
ranking function was used to transform the three glycemic values of artificial foods into nominal values.

Mathematical Modeling and Computing, Vol. 13, No. 1, pp. 1–32 (2026)



14 Bouhanch Z., Ahourag A., Lahbabi H., El Moutaouakil K., Ouzineb M., Cheggour M., Chellak S., et al.

Table 4. Clusters of foods obtained by the GMM-based classification approach.

Cluster Foods
1 Cooked whole-wheat pasta; Chickpeas; White grapes; Rice; Cooked white rice
2 Peppers; Ketchup; Olive green
3 UHT whole milk
4 Dried dates; Flour; Dried wholegrain rice
5 Siegle and wheat bread
6 Sesame seed
7 Cooked veal brain
8 Plain goat cheese
9 Raw whole wheat pasta
10 Cashew nuts
11 Couscous/semolina; wholemeal; Vanilla
12 Virgin olive oil; Avocado oil; Hazelnut oil
13 Cooked lamb liver
14 Chili (harissa); Dandelion
15 Waffle without chocolate; Gnocchi; Honey; Chocolate bread; Bread pudding; Shortbread
16 Crab; Raw beef tongue; Roast pigeon; Raw ground steak; Cooked meat
17 Sunflower seed
18 White chocolate; Croissant
19 Zucchini (cooked); Green beans; Goat’s milk; Soy milk; Pasteurized whole milk; Salad;

Green salad (without oil); Plain whole milk yogurt
20 Potato
21 Tofu
22 Broccoli (cooked); Turkey roast; Rabbit cooked meat; Boiled chicken; Octopus
23 Whole milk powder
24 Cacahuète
25 Raw lamb liver; Mussels
26 Cheese, Cow’s milk, Sardines in oil
27 Wholemeal bread; Wholemeal sandwich bread
28 Asparagus; Cabbage; Cauliflower; Fresh chives; Cucumber; Endive; Green bean (cooked);

Carrot juice; Kiwifruit; Lettuce; Litchi; Mango; Black currant; Orange; Papaya; Salsify;
Tomato; White bean; Lemon; Zest; White bean (cooked)

29 Shrimp; Lobster; Soft-boiled egg
30 Parsley
31 Banana; Prickly pear; Guava (canned); Pineapple (canned); Sweet potato; Dry white bean

(raw)
32 Sauerkraut; Tomato juice (no added sugar); UHT semi-skimmed milk; Canned lentils;

Medium pizza; Tomato soup (ready-made)
33 Almond; Noisette; Pistachio
34 Coconut
35 Garlic; Avocado; Spinach; Finouil; Fish (raw whiting)
36 Dried apricots; Dried grapes
37 Apricot; Artichoke; Beetroot; Broccoli; Carrot (raw); Carrot (peeled, cooked in water); Cel-

ery; Celery stalk (cooked); Cider; Lime; Clementine; Quince; Shallot; Fig; Passion fruit;
Pomegranate; Apple juice; Gooseberry; Green beans (raw); Khaki; Tangerine; Melon; Blue-
berry; Turnip (raw); Turnip (cooked); Nectarine; Onion; Peach; Pear; Leek; Apple (radish
red); Grape juice; Grape; Grenadine; Tea; Watermelon

38 Milling cutter
39 Shrimp chips
40 Cherry; Chestnut; French fries (frozen, microwave); Prune
41 Cream of milk; Coconut milk; Sausage
42 Egg white; Lentil; Egg
43 Egg yolk
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Table 5. Artificial foods obtained by GMM for K = 43.
Vitamin Vitamin Vitamin Vitamin Vitamin Calcium Phos- Magne- Potas- Iron (Fe) Zinc Calories Protein Carbs Sodium Lipids Choles- Fatty Glycemia

(A) C E B6 B12 (Ca) phore sium sium mg/100g mg/100g /100g g/100g mg/100g (Tf) terol acid min mean max

Artificial Food 1 0.000 0.800 0.380 0.050 0.000 18.680 36.000 19.180 70.800 0.436 0.524 127.800 3.980 34.820 33.440 1.198 0.060 0.274 12.722 14.559 16.396
Artificial Food 2 0.000 162.000 0.800 0.400 0.000 8.700 26.700 10.900 187.000 0.400 0.100 34.000 1.000 5.700 1369.0 0.300 0.000 0.045 0.570 0.570 0.570
Artificial Food 3 0.047 0.000 0.100 0.000 0.000 112.000 87.000 11.000 140.000 0.100 0.400 65.000 3.200 4.700 42.200 3.700 14.000 2.300 1.457 1457.0 1.457
Artificial Food 4 0.000 0.667 0.400 0.600 0.000 29.867 176.000 102.733 439.000 2.167 1.433 327.667 6.233 68.767 1.667 1.237 0.067 0.244 29.792 41.567 53.342
Artificial Food 5 0.000 0.100 0.210 0.100 0.000 92.500 134.000 110.000 167.000 5.100 10.000 266.000 8.200 49.800 393.000 2.200 0.000 0.300 19.920 19.920 19.920
Artificial Food 6 0.000 0.000 0.000 0.800 0.000 962.000 604.000 324.000 468.000 14.600 5.700 9.300 17.700 9.300 0.100 49.700 0.000 7.000 2.790 3.023 3.255
Artificial Food 7 0.000 13.000 0.000 0.200 0.010 16.000 385.000 16.000 214.000 1.700 1.600 135.000 11.500 0.600 200.000 9.600 3100.0 2.200 0.000 0.000 0.000
Artificial Food 8 0.088 0.400 0.200 0.000 0.000 80.600 102.000 9.900 115.000 0.200 0.400 165.000 10.600 208.000 0.300 35.600 45.700 24.600 0.000 0.000 0.000
Artificial Food 9 0.000 0.000 0.100 0.100 0.000 26.100 160.000 76.700 378.000 3.200 1.900 353.000 11.800 67.600 4.200 2.200 0.000 0.300 27.040 27.040 27.040
Artificial Food 10 0.000 0.500 0.900 0.400 0.000 41.800 454.000 247.000 580.000 5.000 5.400 631.000 19.800 21.800 16.000 46.350 1.800 9.157 5.450 5.450 5.450
Artificial Food 11 0.016 2.367 0.233 0.100 0.000 44.867 59.433 17.467 301.333 0.900 0.633 108.333 4.167 11.333 6.367 5.200 17.533 0.209 2.430 2.430 2.430
Artificial Food 12 0.000 0.000 0.000 0.000 0.000 0.833 0.000 0.193 0.267 0.000 0.000 899.667 0.000 0.000 0.033 100.000 1.267 10.933 0.000 0.000 0.000
Artificial Food 13 7.630 11.500 0.400 0.700 0.070 8.500 424.000 22.500 286.000 7.500 6.100 213.000 26.400 6.500 0.100 8.800 410.000 3.400 0.000 0.000 0.000
Artificial Food 14 0.000 29.050 2.175 0.250 0.000 62.325 55.825 39.175 508.500 2.525 0.600 58.000 2.525 5.083 55.325 5.440 0.000 0.776 0.802 0.802 0.802
Artificial Food 15 0.008 1.117 0.867 0.117 0.006 27.750 62.850 19.883 142.317 1.350 0.750 330.167 5.950 54.833 307.417 7.950 38.833 3.357 34.832 35.576 36.319
Artificial Food 16 0.007 2.100 0.140 0.320 0.002 12.520 235.800 28.020 261.600 2.920 4.100 182.200 20.320 0.180 138.272 13.980 81.360 5.330 0.000 0.000 0.000
Artificial Food 17 0.000 0.500 31.900 1.200 0.000 34.300 477.000 364.000 622.000 4.900 3.800 642.000 20.200 15.000 4.700 51.460 0.000 5.900 2.250 2.250 2.250
Artificial Food 18 0.000 0.000 1.100 0.100 0.000 156.050 160.500 23.000 231.000 0.600 0.800 482.000 7.450 52.700 45.250 26.500 11.500 15.350 24.925 27.906 30.888
Artificial Food 19 0.022 2.625 0.163 0.069 0.000 68.963 58.075 17.063 186.750 0.449 0.295 35.375 2.150 3.313 42.213 1.475 8.550 0.696 0.844 0.900 0.939
Artificial Food 20 0.000 10.200 0.000 0.300 0.000 0.000 0.000 20.000 331.000 0.000 5.000 73.000 2.000 15.000 0.000 0.100 0.000 0.000 8.100 11.400 14.700
Artificial Food 21 0.000 0.000 0.500 0.100 0.000 80.200 158.000 134.000 170.000 2.900 1.700 125.000 11.500 1.600 2873.0 8.000 0.000 1.157 0.240 0.240 0.240
Artificial Food 22 0.073 0.050 0.450 0.267 0.001 16.433 138.083 21.300 227.000 1.167 1.283 136.333 22.633 0.433 126.517 3.695 51.600 1.445 0.028 0.028 0.028
Artificial Food 23 0.344 8.300 0.700 0.400 0.003 965.000 703.000 86.200 1200.0 1.200 3.300 491.000 27.200 36.200 371.000 26.710 94.400 16.740 10.860 10.860 10.860
Artificial Food 24 0.000 0.700 12.200 0.500 0.000 4.900 370.000 70.600 54.200 0.000 2.800 636.000 25.900 14.800 2.100 49.600 0.000 1.000 2.070 2.070 2.070
Artificial Food 25 1.226 9.500 1.600 0.200 0.041 37.550 291.000 48.950 238.500 6.200 3.600 125.000 18.100 5.350 179.500 3.720 242.000 0.963 0.000 0.000 0.000
Artificial Food 26 0.171 0.000 0.867 0.167 0.005 615.000 407.000 32.067 200.667 0.967 2.433 305.667 22.833 0.600 588.667 23.617 74.933 12.376 0.170 0.177 0.183
Artificial Food 27 0.000 0.000 0.450 0.250 0.000 60.000 207.000 137.500 258.500 7.800 4.500 263.500 8.700 46.350 558.000 2.800 0.550 0.595 35.393 35.393 35.393
Artificial Food 28 0.000 33.765 0.438 0.101 0.000 35.609 27.013 14.267 201.690 0.471 0.179 37.043 1.209 6.266 6.143 0.230 0.035 0.043 2.132 2.247 2.389
Artificial Food 29 0.044 0.133 1.567 0.067 0.003 120.500 191.333 35.167 223.333 1.600 1.833 111.333 18.600 0.367 42.300 4.373 204.000 1.281 0.000 0.000 0.000
Artificial Food 30 0.000 190.000 1.700 0.100 0.000 190.000 51.800 32.100 795.000 4.300 0.900 47.000 3.000 4.600 452.000 4.430 0.000 0.115 1.470 1.470 1.470
Artificial Food 31 0.000 5.650 0.083 0.150 0.000 24.917 31.667 35.700 234.500 0.550 0.383 83.667 2.150 16.500 5.483 0.388 0.017 0.119 6.540 6.849 7.157
Artificial Food 32 0.012 6.717 0.583 0.083 0.000 55.633 68.067 14.600 174.333 0.600 0.483 89.667 4.183 9.417 396.500 3.070 10.350 1.069 4.652 4.652 4.652
Artificial Food 33 0.000 0.467 7.133 0.600 0.000 160.500 437.000 141.800 643.000 2.967 2.633 640.333 22.233 6.367 3.870 53.923 0.893 4.702 1.130 1.130 1.130
Artificial Food 34 0.000 2.200 0.000 0.000 0.000 22.000 16.500 26.500 198.000 0.300 0.100 20.000 0.500 3.900 20.000 33.490 0.000 29.700 1.365 1.365 1.365
Artificial Food 35 0.000 17.000 0.000 1.200 0.000 17.700 161.000 20.700 555.000 1.300 0.800 131.000 7.900 21.500 17.000 0.500 0.000 0.089 3.225 3.225 3.225
Artificial Food 36 0.000 1.850 2.250 0.200 0.000 62.500 82.650 34.600 931.500 3.200 0.300 287.000 3.050 66.500 14.850 0.555 0.098 0.109 11.700 13.025 14.350
Artificial Food 37 0.000 13.046 0.392 0.084 0.000 23.514 23.067 10.773 202.292 0.432 0.171 42.708 1.024 7.843 16.131 0.252 0.134 0.036 2.827 2.968 3.108
Artificial Food 38 0.000 67.000 0.200 0.100 0.000 14.900 32.600 13.000 165.000 0.300 0.100 29.000 0.800 7.700 1.000 0.300 0.200 0.015 64.000 64.000 64.000
Artificial Food 39 0.000 5.233 2.600 0.050 0.000 34.467 30.900 20.100 190.267 0.967 0.500 264.333 1.767 28.967 1188.667 14.007 4.333 1.476 4.942 4.942 4.942
Artificial Food 40 0.000 11.900 0.550 0.225 0.000 26.175 78.650 26.500 496.000 1.025 0.475 195.750 2.600 35.675 51.000 4.833 0.205 1.082 26.427 26.427 26.427
Artificial Food 41 0.161 2.033 0.433 0.033 0.000 42.867 95.000 24.467 236.333 1.500 0.933 229.000 6.567 3.933 233.067 21.460 33.867 12.435 1.037 1.037 1.037
Artificial Food 42 0.064 0.000 0.567 0.133 0.003 33.700 109.900 18.800 162.333 1.167 0.700 101.000 10.233 6.000 43.400 3.627 118.467 0.918 1.660 1.660 1.660
Artificial Food 43 0.453 0 4.5 0.132 0.002 91.6 336 8.3 71.5 2.8 1.1 345 16 0.5 0.1 26.5 1140 9.6 0 0 0
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Figure 4. Probability of homogeneity of each group produced by GMM for K = 43.

Degree of belief that artificial food GL is low

0.6 0.80.40 10.2

C
ri
s
p

 q
u

a
n

ti
fi
c
a

ti
o

n

0

10

20

30

40

50

60

70

Figure 5. Ranking values for different degrees of belief of artificial foods.

Figure 5 gives the crisp glycemic load values for different artificial foods. We notice that the ranking
functions are almost parallel and are distributed between 0 and 70.

5.2. Artificial optimal diets

We have used a genetic algorithm to solve the artificial optimization diet model introduced in Sec-
tion 4 considering 171 foods (described based on 21 nutrients) and the standard nutrient requirements
discussed in [22, 23, 34, 35]. As the ranking function depends on the degree of belief that GL is low,
we have solved the mathematical model considering 21 of degrees of belief (0%:5%:100%). GA pa-
rameters were configured as follows: coding (real), fitness function ((weight)*artificial diet objective
function – penalty for each constraint infringed), crossover (multiple), crossover ratio (0.8), Initializa-
tion (random), Number of iteration (100*dim), Mutation (gaussian), Mutation ratio (0.1), Population
size (200), and Selection function (stochastic (uniform)).

Notes:

(a) The configuration of GA was performed experimentally, i.e., several configurations were performed
and the ones producing better results were retained.
(b) Using the stochastic (uniform) method, selection explores new regions and exploits existing ones
at the same time [45]. With a ratio of 0.8, the crossover operator enables in-depth exploration of
current regions [47]. By mutating 10% of the current population, AG explores new regions without
being random [46]. What is more, using a population of 100*dim=100*43=4300 individuals enables
us to explore several regions [48].
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Figure 7 shows the evolution of fitness across different belief levels in artificial and real systems. It
quantifies the progress of the genetic algorithm in the optimization model for artificial systems at three
belief levels (25%, 50%, and 75%). We can see that the algorithm starts to converge from generation
150, reducing the number of variables to 43 instead of the originally considered 171 in [21–23, 32, 34,
35, 38], and it takes more than 500 generations to produce an optimal diet. In addition, the lower the
degree of belief that the (GLs) of the foods are high, the higher the fitness function, which is expected
as the GL values of the foods become high.

Table 6. Optimal diet menu for 25% degrees of belief that the foods glycemic load is low.

Optimal diet
Cluster Foods menu for 25% degrees

of belief

2 Peppers; Ketchup; Green olives 6

19
Zucchini (cooked); Green beans; Goat’s milk; Soy milk; Pasteurized
whole milk; Salad; Green salad (without oil); Plain whole milk yogurt

2

28

Asparagus; Cabbage; Cauliflower(Fresh); Chives; Cucumber; Endive;
Green bean (cooked); Carrot juice; Kiwifruit; Lettuce; Litchi; Mango;
Black currant; Orange; Papaya; Salsify; Tomato; White bean; Lemon;
Zest; White bean (cooked); White bean (cooked)

6

31
Banana; Guava (canned); Prickly pear; Pineapple (canned); Sweet
potato; Dry white bean (raw)

3

35 Garlic ; Avocado; Spinach; Fennel; Fish (raw whiting); 6

37

Apricot; Artichoke; Beetroot; Broccoli; Carrot (raw); Carrot (peeled,
cooked in water); Celery; Celery stalk (cooked); Cider; Lime; Clemen-
tine; Quince; Shallot; Fig; Passion fruit; Pomegranate; Apple juice;
Gooseberry; Green beans (raw); Khaki; Tangerine; Melon; Blueberry;
Turnip (raw); Turnip (cooked); Nectarine; Onion; Peach; PearLeek; Ap-
pleRadish red; Grape, juice; Grape, greengage; Tea; Watermelon.

6

42 Egg white; Lentil; Egg 1
Total glycemic load 78.7547

Cholesterol level (mg) 228.543

Table 7. Optimal diet for 50% degrees of belief the foods glycemic load is low.

Optimal diet
Cluster Foods menu for 50% degrees

of belief

2 Peppers; Ketchup; Green olives 6

19
Zucchini (cooked); Green beans; Goat’s milk; Soy milk; Pasteurized
whole milk; Salad; Green salad (without oil); Plain whole milk yogurt

3

25 Raw lamb liver; Mussels 2

28

Asparagus; Cabbage; Cauliflower, Fresh; Chives; Cucumber; Endive;
Green bean (cooked); Carrot juice; Kiwifruit; Lettuce; Litchi; Mango;
Black currant; Orange; Papaya; Salsify; Tomato; White bean; Lemon;
Zest; White bean (cooked); White bean (cooked)

5

35 Garlic ; Avocado; Spinach; Fennel; Fish (raw whiting); 6

36 Dried apricots; Dried grapes 2

37

Apricot; Artichoke; Beetroot; Broccoli; Carrot (raw); Carrot (peeled,
cooked in water); Celery; Celery stalk (cooked); Cider; Lime; Clemen-
tine; Quince; Shallot; Fig; Passion fruit; Pomegranate; Apple juice;
Gooseberry; Green beans (raw); Khaki; Tangerine; Melon; Blueberry;
Turnip (raw); Turnip (cooked); Nectarine; Onion; Peach; PearLeek; Ap-
pleRadish red; Grape, juice; Grape, greengage; Tea; Watermelon.

6

Total glycemic load 80.5814
Cholesterol level (mg) 226.8971
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Table 8. Optimal diet for 75% degrees of belief the foods glycemic load is low.

Optimal diet
Cluster Foods menu for 75% degrees

of belief

2 Peppers; Ketchup; Green olives 6

19
Zucchini (cooked); Green beans; Goat’s milk; Soy milk; Pasteurized
whole milk; Salad; Green salad (without oil); Plain whole milk yogurt

4

28

Asparagus; Cabbage; Cauliflower; Chives; Cucumber; Endive; Green
bean (cooked); Carrot juice; Kiwifruit; Lettuce; Litchi; Mango; Black
currant; Orange; Papaya; Salsify; Tomato; White bean; Lemon; Zest;
White bean (cooked); White bean (cooked)

6

35 Garlic; Avocado; Spinach; Fennel; Fish (raw whiting); 6

37

Apricot; Artichoke; Beetroot; Broccoli; Carrot (raw); Carrot (peeled,
cooked in water); Celery; Celery stalk (cooked); Cider; Lime; Clemen-
tine; Quince; Shallot; Fig; Passion fruit; Pomegranate; Apple juice;
Gooseberry; Green beans(raw); Khaki; Tangerine; Melon; Blueberry;
Turnip (raw); Turnip (cooked); Nectarine; Onion; Peach; PearLeek; Ap-
pleRadish red; Grape, juice; Grape, greengage; Tea; Watermelon.

6

Total glycemic load 78.3825
Cholesterol level (mg) 227.4293

Tables 6, 7, and 8 represent the optimal artificial diets corresponding to the degree of belief 25%,
50%, and 75%. The total glycemic load of these diets is 78.7547, 80.5814, and 78.3825, respectively,
which are reasonable. We remark that the three optimal artificial diets contain artificial foods 2, 19,
28, 35, and 37. The artificial diet is distinguished from the other two by the two artificial foods 31
and 42; the optimal artificial diet 2 is distinguished from the other two by the artificial food 36. The
facts that the three artificial diets contain artificial foods 19, 28, and 37 and that the groups contain
many real foods (8, 23, and 33, respectively), offer a very rich dietary menu that can meet the needs
and tastes of all users of our system, particularly patients suffering from permanent diseases such as
diabetes.

5.3. Constraints satisfaction programming to real optimal diets

In this subsection, we will use constraint satisfaction programming (CSP) to convert the optimal
artificial diets into real optimal diets by following the next steps:
(a) Introduce variables and their domains;
(b) Formulate the constraints;
(c) Solve the obtained CSP using logical programming in the PROLOG environment. In this context,
because the CSPs constructed are formed with independent blocks of variables, a classical backtracking
technique is sufficient [54].

Table 9 gives the variables and the domains corresponding to the optimal artificial diet produced
for 25% degrees of belief. For example, the number of decision variables associated with the artificial
food 31 is six because the group represented by this artificial food is 6 (Banana; Guava (canned);
Prickly pear; Pineapple (canned); Sweet potato; Dry white bean (raw)). As the number of optimal
units of the artificial food is 3, thus the domain of these variables is D25%

31 = {0, 1, 2, 3}.
For example, 3 units of the artificial food 31 can be reached with different manners by solving the

following constraint:
∑6

j=1 x31,j = 3 for x31,j ∈ D25%
31 . Following the same reasoning, we obtain the

constraints programming associated with the artificial diet obtained by GMM-GA for 25% degrees of
belief given by:

(CSP25%) :





∑3
j=1 x2,j = 6,

∑8
j=1 x19,j = 2,

∑23
j=1 x28,j = 6,

∑6
j=1 x31,j = 3,∑5

j=1 x35,j = 6,
∑33

j=1 x37,j = 6,
∑3

j=1 x42,j = 1,

x2,1 ∈ D25%
2 , x19,j ∈ D25%

19 , x28,j ∈ D25%
28 ,

x31,j ∈ D25%
31 , x35,1 ∈ D25%

35 , x37,1 ∈ D25%
37 , x42,j ∈ D25%

42 .

(4)
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Table 9. Variables and domains of constraints programming associated with the artificial diet obtained by
GMM-GA for 75% degrees of belief the foods glycemic load i low.

Optimal diet
Cluster Foods with decision variables for 25% degrees

of belief

2 Peppers (x2,1); Ketchup(x2,2); Green olives (x2,3) D25%
2 = {6}

19

Zucchini (cooked) (x19,1); Green beans (x19,2); Goat’s milk
(x19,3); Soy milk (x19,4); Pasteurized whole milk (x19,5); Salad
(x19,6); Green salad (without oil) (x19,7); Plain whole milk yogurt
(x19,8)

D25%
19 = {0, 1, 2}

28

Asparagus (x28,1); Cabbage (x28,2); Cauliflower (x28,3); Fresh
(x28,4); Chives (x28,5); Cucumber (x28,6); Endive (x28,7); Green
bean (cooked)(x28,8); Carrot juice (x28,9); Kiwifruit (x28,10);
Lettuce (x28,11); Litchi (x28,12); Mango (x28,13); Black currant
(x28,14); Orange(x28,15); Papaya (x28,16); Salsify (x28,17); Tomato
(x28,18); White bean (x28,19); Lemon (x28,20); Zest (x28,21); White
bean (cooked) (x28,22); White bean (cooked) (x28,23)

D25%
28 = {0, 1, 2, 3, 4, 5, 6}

31
Banana (x31,1); Guava (canned) (x31,2); Prickly pear (x31,3);
Pineapple (canned) (x31,4); Sweet potato (x31,5); Dry white bean
(raw) (x31,6)

D25%
31 = {0, 1, 2, 3}

35
Garlic (x35,1); Avocado (x35,2); Spinach (x35,3); Fennel (x35,4);
Fish (raw whiting) (x35,5)

D25%
35 = {6}

37

Apricot (x37,1); Artichoke (x37,2); Beetroot (x37,3); Broccoli
(x37,4); Carrot (raw) (x37,5); Carrot (peeled, cooked in water)
(x37,6); Celery (x37,7); Celery stalk (cooked) (x37,8); Cider (x37,9);
Lime (x37,10); Clementine (x37,11); Quince (x37,12); Shallot
(x37,13); Fig(x37,14); Passion fruit (x37,15); Pomegranate (x37,16);
Apple juice (x37,17); Gooseberry (x37,18); Green beans (raw)
(x37,19); Khaki (x37,20); Tangerine (x37,21); Melon(x37,22); Blue-
berry (x37,23); Turnip (raw) (x37,24); Turnip (cooked) (x37,25);
Nectarine; Onion (x37,26); Peach (x37,27); PearLeek (x37,28); Ap-
pleRadish red (x37,29); Grape, juice (x37,30); Grape, greengage
(x37,31); Tea (x37,32); Watermelon (x37,33)

D25%
37 = {0, 1, 2, 3, 4, 5, 6}

42 Egg white (x42,1); Lentil (x42,2); Egg (x42,3) D25%
42 = {0, 1}

The logical program permitting to solve the (CSP25%) is given by Figure 8. In this sense, we have
defined three domains of predicates, seven artificial food predicates (corresponding to the seven artificial
foods 2, 19, 28, 31, 35, 37, and 42, respectively), and a predicate that implements all these predicates
to produce a real diet. Figure 9 gives the first four solutions (real diets) of CSP optimal diet menu for
25% degrees of belief. The number of solutions is very large, which demonstrates the richness of the
menu corresponding to the case when the degree of belief is equal to 25%.

Two explicit real diets produced by solving the (CSP25%) are:
(a) 3*Peppers; 3*Green olives; Green beans; Goat’s milk; Asparagus; Cabbage; Cauliflower; Fresh;
Chives; Cucumber; Banana; Guava (canned); Prickly pear; 2*Garlic; 2*Avocado; 2*Spinach; Apri-
cot; Artichoke; Beetroot; Broccoli; Carrot (peeled, cooked in water); Celery; Egg white with
(71, 426; 74, 53; 77, 634) glycemic loads.
(b) 3*Peppers; 3*Green olives; Pasteurized whole milk; Salad; Carrot juice; Kiwifruit; Lettuce; Litchi;
Mango; Black currant; Prickly pear; Pineapple (canned); Sweet potato; 2*Garlic; Avocado; 3*Spinach;
Shallot; Fig; Passion fruit; Pomegranate; Apple juice; Gooseberry; Lentil with (50, 098; 53, 9; 57, 702)
glycemic loads.

Considering the menu diet given by Table 6, we can choose diets with low GL, if we are diabetic,
and medium GL, if we are diabetic and physically active.

Table 10 gives the variables and the domains corresponding to the optimal artificial diet produced
for 50% degrees of belief. The number of variables, in this case, is 76. The constraints programming
associated with the artificial diet obtained by GMM-GA for 50% degrees of belief is determined by
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considering the introduced variables, domains, and the number of optimal units from each artificial
food;

(CSP50%) :





∑3
j=1 x2,j = 6,

∑8
j=1 x19,j = 3,

∑7
j=1 x25,j = 2,

∑23
j=1 x28,j = 5,∑5

j=1 x35,j = 6,
∑3

j=1 x36,j = 2,
∑33

j=1 x37,j = 6,

x2,j ∈ D50%
2 , x19,j ∈ D50%

19 , x25,j ∈ D50%
25 , x28,j ∈ D50%

28 ,

x35,j ∈ D50%
35 , x36,j ∈ D50%

36 , x37,j ∈ D50%
37 .

(5)

It is relatively easy to solve (CSP50%) because of its composition of independent variable blocks,
resulting in low complexity. Creating a practical dietary plan from (CSP50%) only requires assigning
one variable in each set of constraints. The logical program permitting to solve the (CSP50%) is given
by Figure 10. In this regard, we have defined four domain predicates, seven artificial food predicates
(corresponding to the seven artificial foods 2, 19, 25, 28, 35, 36, and 37, respectively), and the predicate
that implements all these predicates to produce a real diet.

Table 10. Variables and domains of constraints programming associated with the artificial diet obtained by
GMM-GA for 50% degrees of belief the foods glycemic load i low.

Cluster Foods with decision variables Domain for 50%
degrees of belief

2 Peppers (x2,1); Ketchup (x2,2); Green olives (x2,3) D50%
2 = {6}

19
Zucchini (cooked) (x19,1); Green beans (x19,2); Goat’s milk (x19,3);
Soy milk(x19,4); Pasteurized whole milk (x19,5); Salad (x19,6); Green
salad (without oil) (x19,7); Plain whole milk yogurt (x19,8)

D50%
19 = {0, 1, 2, 3}

25 Raw lamb liver (x25,1); Mussels (x25,2) D50%
25 = {0, 1, 2}

28

Asparagus (x28,1); Cabbage (x28,2); Cauliflower (x28,3); Fresh (x28,4);
Chives (x28,5); Cucumber (x28,6); Endive (x28,7); Green bean
(cooked) (x28,8); Carrot juice (x28,9); Kiwifruit (x28,10); Lettuce
(x28,11); Litchi (x28,12); Mango (x28,13); Black currant (x28,14); Or-
ange (x28,15); Papaya (x28,16); Salsify (x28,17); Tomato (x28, 18);
White bean (x28,19); Lemon (x28,20); Zest (x28,21); White bean
(cooked) (x28,22); White bean (cooked) (x28,23)

D50%
28 = {0, 1, 2, 3, 4, 5}

35
Garlic (x35,1); Avocado (x35,2); Spinach (x35,3); Fennel (x35,4); Fish
(raw whiting) (x35,5);

D25%
35 = {6}

36 Dried apricots (x36,1); Dried grapes (x36,2) D25%
36 = {0, 1, 2}

37

Apricot (x37,1); Artichoke (x37,2); Beetroot (x37,3); Broccoli (x37,4);
Carrot (raw) (x37,5); Carrot (peeled, cooked in water) (x37,6); Celery
(x37,7); Celery stalk (cooked) (x37,8); Cider (x37,9); Lime (x37,10);
Clementine (x37,11); Quince (x37,12); Shallot (x37,13); Fig (x37,14);
Passion fruit (x37,15); Pomegranate (x37,16); Apple juice (x37,17);
Gooseberry (x37,18); Green beans (raw) (x37,19); Khaki (x37,20);
Tangerine (x37,21); Melon (x37,22); Blueberry (x37,23); Turnip (raw)
(x37,24); Turnip (cooked) (x37, 25); Nectarine; Onion (x37,26); Peach
(x37,27); PearLeek (x37,28); AppleRadish red (x37,29); Grape, juice
(x37,30); Grape, greengage (x37,31); Tea (x37,32); Watermelon (x37,33)

D25%
37 = {0, 1, 3, 4, 5, 6}

Figure 11 gives the first four solutions (real diets) of CSP optimal diet menu for 50% degrees of
belief. To get faiseable diets, we ask PROLOG if there are some foods from the menu that made
the predicate real diet true, then all the possible solutions are displayed successively. The number of
solutions is very large, which demonstrates the richness of the menu corresponding to the case when
the degree of belief is equal to 50%.

Two real diets produced by solving the (CSP50%) are given by:
(a) 3*Peppers; 3*Green olives; Soy milk; Green salad (without oil); Plain whole milk yogurt; Raw lamb
liver; Mussels; Orange; Papaya; Salsify; Tomato; White bean; Garlic; 2*Avocado; 2*Spinach; Fennel;
Dried apricots; Dried grapes; Carrot (peeled, cooked in water); Celery; Celery stalk (cooked); Cider;
Lime; Clementine (53, 353; 57, 525; 62, 291);
(b) 3*Peppers; 3*Green olives; Green beans; Goat’s milk; Pasteurized whole milk; Plain whole milk
yogurt; 2*Raw lamb liver; Asparagus; Cabbage; Chives; Cucumber; Lemon; Garlic; Avocado; Spinach;
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Fennel; 2*Fish (raw whiting); 2*Dried grapes; Turnip (cooked); Nectarine; Onion; Peach; AppleRadish
red; Grape, greengage; Watermelon (55, 266; 56, 5755; 57, 745).

Considering the menu diet given by Table 7, we note that these two diets have a low GL compared
to the optimal artificial diet.

Table 11. Variables and domains of constraints programming associated with the artificial diet obtained by
GMM-GA for 75% degrees of belief the foods glycemic load i low.

Cluster Foods with decision variables Domain for 75%
degrees of belief

2 Peppers (x2,1); Ketchup (x2,2); Green olive (x2,3) D75%
2 = {6}

19
Zucchini (cooked) (x19,1); Green beans (x19,2); Goat’s milk (x19,3);
Soy milk (x19,4); Pasteurized whole milk (x19,5); Salad (x19,6); Green
salad (without oil) (x19,7); Plain whole milk yogurt (x19,8)

D75%
19 = {0, 1, 2, 3, 4}

28

Asparagus (x28,1); Cabbage (x28,2); Cauliflower (x28,3); Fresh (x28,4);
Chives (x28,5); Cucumber (x28,6); Endive (x28,7); Green bean
(cooked) (x28,8); Carrot juice (x28,9); Kiwifruit (x28,10); Lettuce
(x28,11); Litchi (x28,12); Mango (x28,13); Black currant (x28,14); Or-
ange (x28,15); Papaya (x28,16); Salsify (x28,17); Tomato (x28,18);
White bean (x28,19); Lemon (x28,20); Zest (x28,21); White bean
(cooked) (x28,22); White bean (cooked) (x28,23)

D75%
28 = {0, 1, 2, 3, 4, 5, 6}

35
Garlic (x35,1) ; Avocado (x35,2); Spinach (x35,3); Fennel (x35,4); Fish
(raw whiting) (x35,5)

D75%
35 = {6}

37

Apricot (x37,1); Artichoke (x37,2); Beetroot (x37,3); Broccoli (x37,4);
Carrot (raw) (x37,5); Carrot (peeled, cooked in water) (x37,6); Celery
(x37,7); Celery stalk (cooked) (x37,8); Cider (x37,9); Lime (x37,10);
Clementine (x37,11); Quince (x37,12); Shallot (x37,13); Fig (x37,14);
Passion fruit (x37,15); Pomegranate (x37,16); Apple juice (x37,17);
Gooseberry (x37,18); Green beans (raw) (x37,19); Khaki (x37,20);
Tangerine (x37,21); Melon (x37,22); Blueberry (x37,23); Turnip (raw)
(x37,24); Turnip (cooked) (x37,25); Nectarine; Onion (x37,26); Peach
(x37,27); PearLeek (x37,28); AppleRadish red (x37,29); Grape, juice
(x37,30); Grape, greengage (x37,31); Tea (x37,32); Watermelon (x37,33)

D75%
37 = {0, 1, 2, 3, 4, 5, 6}

Table 11 gives the variables and the domains corresponding to the optimal artificial diet produced
for 75% degrees of belief. The variables and domains of this CSP represent the basis of the first CSPs.

Considering the introduced variables, domains, and the number of optimal units from each artificial
food, the constraints programming associated with the artificial diet obtained by GMM-GA for 75%
degrees of belief is given by:

(CSP75%) :





∑3
j=1 x2,j = 6,

∑8
j=1 x19,j = 4,

∑23
j=1 x28,j = 6,∑5

j=1 x35,j = 6,
∑33

j=1 x37,j = 6,

x2,1 ∈ D75%
2 , x19,j ∈ D75%

19 , x28,j ∈ D75%
28 ,

x35,1 ∈ D75%
35 , x37,1 ∈ D75%

37 .

(6)

The fact that (CSP75%) is made up of blocks of independent variables makes it very easy to solve with
very low complexity. Indeed, to obtain a real food regime from (CSP75%), all you have to do is set one
variable in each block of constraints.

The logical program permitting to solve the (CSP75%) is given by Figure 12. The predicates
introduced in this case represent the core of (CSP25%) and (CSP50%).

Figure 13 gives the first five solutions (real diets) of CSP optimal diet menu for 75% degrees of
belief. Compared with the first two menus items, the (CSP75%) menu offers fewer options, but it is
still rich and can meet the needs of all users of our system.

Two real diets produced by solving the (CSP75%) are given by:
(a) 3*Peppers; 3*Green olives; Pasteurized whole milk; Salad; Green salad (without oil); Plain whole
milk yogurt; Green bean (cooked); Kiwifruit; Lettuce; Mango; Orange; Tomato; Garlic; Avocado;
2*Spinach; Fennel; Fish (raw whiting); Artichoke; Broccoli; Carrot (raw); Celery; Quince; Watermelon
(42, 65; 44, 154; 46, 252).
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(b) 3*Peppers; 3*Green olives; 2*Pasteurized whole milk; Salad; Plain whole milk yogurt; 2*Asparagus;
2*Green bean(cooked); Carrot juice; Orange; Garlic; Avocado; Spinach; Fennel; 2*Fish (raw whiting);
Onion; Peach; PearLeek; AppleRadish red; Grape, juice; Grape, greengage (44, 508; 45, 8575; 47, 801).

We note that the (CSP75%) menu provides very low glycemic load diets, which is normal because
the degree of belief that the GL of different foods is 75. To meet this condition, the food must not be
very old, too desiccated, and overcooked.

To optimize selection from one of the menus, it is possible to enter a target glycemic load value in
the different CSPs. If the introduced condition is very tight, the target GL is increased by small doses
until the PROLOG interpreter responds with “yes” and produces suitable diets.

Table 12. Optimal artificial diets across varying belief levels in low glycemic load and cholesterol control.

Degree of belief 0% 5% 10% 20% 25% 30% 35% 40% 45% 50% 60% 70% 80% 90% 100%

Artificial Food 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
Artificial Food 2 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
Artificial Food 19 5 6 0 5 2 6 6 6 5 3 5 0 2 6 3
Artificial Food 20 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0
Artificial Food 22 0 0 2 0 0 0 2 0 1 0 0 2 0 0 1
Artificial Food 23 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0
Artificial Food 24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Artificial Food 25 0 0 0 0 0 0 0 2 2 0 0 0 0 0 0
Artificial Food 28 6 6 6 6 6 6 6 6 6 5 6 6 6 0 6
Artificial Food 29 0 0 0 0 0 6 6 6 6 6 6 6 6 6 6
Artificial Food 31 2 5 4 2 3 0 0 0 0 0 0 0 0 0 1
Artificial Food 35 6 6 6 6 6 6 6 6 6 5 6 0 0 6 6
Artificial Food 36 0 0 0 0 0 3 0 0 2 0 0 0 0 0 1
Artificial Food 37 6 1 6 6 6 6 6 6 6 5 6 6 6 6 6
Artificial Food 42 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

Total glycemic load 73.5 80.1 82.7 73.0 78.8 73.9 80.1 79.2 80.0 80.6 80.0 78.4 80.4 79.1 75.0
Total cholesterol (mg) 229.8 228.5 228.0 226.1 228.5 229.5 228.3 228.5 227.9 226.9 226.1 229.2 228.0 228.1 229.9

5.4. Discussions

Groups homogeneity. The degrees of correlation between the various nutrients are shown in Figu-
re 14. The positive and negative correlation means are 0.3198 and −0.1211, respectively; the percentage
of disjoint nutrient pairs with a degree of correlation in [−0.1211 0.3198] is 61.80%, which means that
the columns formed by the nutrients are strongly uncorrelated. This explains the non-homogeneity of
certain food groups formed by the clustering algorithms [33]. Because the patients targeted by this
system may be diabetics, error messages will be generated by the system when a patient wants to
substitute a low GL food with a very high GL food. Similar error messages should appear if one or
more substitutions would cause a glaring lack of a key nutrient.

Optimal serving sizes. The fact that the database consists of 171 Moroccan foods ensures that
optimal diets comply with WHO and GDA recommendations; but the fact that the number of artificial
foods is only 43 has caused moments of doubt about these recommendations. This led us to check
whether the constraints that translate these recommendations can be satisfied in particular cases.

Foods tabu list. The CSP models associated with the various menus (managed by the GA) can
be modified, while adding certain constraints, to tell the system that a patient wants (or does not
want) a list of certain foods. This is equivalent to setting certain variables, so it is a matter of reducing
the sizes of the CSPs associated with the menus produced by the GA.

Applicability. This work is carried out as part of a very large research project funded by the
Moroccan government as part of a call for projects Al-Khawarizmi [56]. The aim is to set up an
intelligent and personalized nutritional strategy, by researchers from a variety of specialties in the fields
of data mining, artificial intelligence, operations research, optimal control, endocrinology, nutrition,
dietetics and food biochemistry, to control the Moroccan diabetic population. Here are the main steps
to achieve this goal:
(a) drawing up a list of the foods most consumed by the Moroccan population [35, 38] and [57];
(b) The second step is to analyze the food to quantify nutrient content by nutritionists, biochemists
specialized in food science, and endocrinologists [23, 38];
(c) breaking down this list of foods into homogeneous subgroups using unsupervised learning methods;
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these groups are then analyzed and verified by nutritionists, biochemists specialized in food technology
and endocrinologists [58];
(d) collection of nutrient expert recommendations from various expert research papers [24, 25]. Then,
the automation of the expert recommendations using the auto-encoder neural network by data analysts,
nutritionists and biochemists;
(e) modeling of the optimal regime problem by operational research specialists [23,32,34] and [38]. In
this context, endocrinologists and nutritionists listed the US-GDA and WHO recommendations [1–3].
These are faithfully translated into the terms of an optimization problem and solved using local search
methods by artificial intelligence specialists. By integrating the results of the third step with those of
this step, we can build personalized menus, which is one of the objectives of this paper;
(f) Implement constraint satisfaction problem methods to generate real diets by artificial intelligence
specialists. Endocrinologists, nutritionists, and biochemists have analyzed the diets obtained and found
them to align with the US-GDA and WHO recommendations while being personalized and flexible for
use in Morocco.

To implement a strategy using the results of the previous steps, optimal control specialists
introduced several models to estimate the degree of diet severity associated with each compart-
ment [30, 59, 60].

Extensibility. When we extend our system to the non-Moroccan case, the only problem we
face is the variability of the nutritional content of foods, which is strongly influenced by various
factors. The nutritional differences found within the same plant food, or indirectly animal food, can
result from genetic variations, environmental parameters (climate, exposure to sunlight, soil type, and
farming practices), the harvest stage, handling and storage conditions as well as food processing [61,62].
Furthermore, the [63] study showed that the variation of nutritional composition of fruits and leaves
of two genetically different populations of Annona senegalensis Pers trees was not exclusively due to
the climate, but to the highly combined effect of climate and soil, climate and genetic variation, and
climate, soil, and genetic variation. The authors explained these results by the dependence of gene
expression on specific climate and soil conditions. To have a system capable of generating customized
menus, we need to analyze the foods of the target country. But, as our system uses fuzzy logic and
probabilistic methods, it would be able to give a menu that approximates the one of the target countries.

Table 13. Comparison of different systems based on six options and six performance measures.

System
Options Performance

Det. Fuzzy Robust Soft clust. Neural GA Pixel prec. Size migr. Fuzzy knowl. Consensus Applicability Robustness

System 1 X X × X × × X X X × × ×
System 2 X × X X × × X × X X × ×
System 3 × X X × X × × X X × X ×
System 4 X X × × X X X × × X X ×
System 5 × X X X × X × X X X × X

Table 13 compares different systems considering six options and six performance measures. Deter-
ministic programming is not able to handle all feed knowledge and this type of programming is hard to
apply and almost impossible to extend when the context changes. Robust programming offers a useful
representation of this knowledge but results in an expansion of the size of the optimal regime problem.
Fuzzy optimization programming allows for a very good capture of stochastic feeding knowledge; also,
the transformation of fuzzy models based on ranking functions led to problems with the size of the
original problem; moreover, the quantification of degrees of belief contributed to the preservation of
knowledge. In addition, manual substitutions (aimed at personalizing the diet) disrupt the balance of
the diet because it is difficult for a human being to take into account constraints on more than 20 nu-
trients when making multiple substitutions. Food grouping, using soft aggregation techniques, allows
real-time substitution without disturbing the balance of the diet, as they can group foods and consider
all nutrients at the same time. With classified food, consumers now need automated assistance to
help suggest real diets that suit them (compatible with tastes, habits, and traditions) and meet WHO,
USDA, FAO, and DGA guidelines. Optimal grouping, followed by an optimal diet estimation and CSP
implementation, is an interesting proposal that can be applied to help consumers develop their food
plans.
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6. Conclusions

Diets often fail for several reasons. They can be too restrictive, recommend unappealing foods, and
lack variety, making it difficult to stick to the plan. This article proposes a solution to this issue
by suggesting a personalized nutrition menu. This will be achieved using unsupervised learning, a
fuzzy mathematical optimization model, a suitable ranking function, an evolutionary algorithm, and
constraint satisfaction programming.

Despite strong non-correlation between nutrients and, based on hypothesis testing, all groups are
homogeneous. Regarding non-homogeneous groups, it was necessary to do a manual post-processing
separation based on glycemic load to ensure equivalent substitutions. As we show that GMM preserves
the order of features, artificial foods have the same nature as real foods. This helped build performance
GL-membership. For different GL-degrees of belief (0.25,0.5,0.75), the ranking function used allows a
performance crisp transformation that preserves the GL-foods experimental results. The diet menus
obtained, using GA, associated with different degrees of belief, are rich and compatible with the WHO,
USDA, and FAO guidelines, which prove the consistency of the proposed artificial optimal diet model.

The real diets constructed from the proposed dietary menus using the backtracking method applied
to the proposed CSP are also compatible with international nutrient guidelines, which proves the
consistency of the proposed CSPs models. Moreover, the CSPs introduced are not very complicated,
which permits to building of feasible real diets in real time. Finally, the results obtained show that
the artificial and personalized diets are compatible with WHO, USDA, and FAO recommendations, as
well as the fact that the menus are flexible, allowing the replacement of expensive foods with cheap
foods and rare foods with available foods without affecting the quality of diets.

By considering glycemic load and cholesterol, the model enhances metabolic balance, helping dia-
betic patients manage blood sugar and maintain a healthy lipid profile.

The artificial optimization model of the optimal diet is based on standard daily nutrient require-
ments, which prevents our system from producing deeply personalized diets. In future work, we will
present the nutrient requirements in terms of trapezoidal membership functions and convert them into
crisp values to improve the performance of our system.
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Figure 6. Comparison of clustering methods’ silhouettes.

Mathematical Modeling and Computing, Vol. 13, No. 1, pp. 1–32 (2026)



Unsupervised Learning for Optimal Personalized Dietary Menus to Prevent Diabetes and . . . 25

B. Genetic algorithm performance curves
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Figure 7. Fitness evolution for different degrees of belief in artificial and real full diets.
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C. Logical coding of CSP optimal diet menu for different degrees of belief

Figure 8. Logical coding of CSP optimal diet menu for 25% degrees of belief.

Figure 9. The first four solutions (real diets) of CSP optimal diet menu for 25% of belief.

Figure 10. Logical coding of CSP optimal diet menu for 50% degrees of belief.
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Figure 11. The first four solutions (real diets) of CSP optimal diet menu for 50% degrees of belief.

Figure 12. Logical coding of CSP optimal diet menu for 75% degrees of belief.

Figure 13. The first five solutions (real diets) of CSP optimal diet menu for 75% degrees of belief.
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D. Nutrients correlation

Figure 14. Correlation between different nutrients.
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[15] Orešković P., Kljusurić J. G., Šatalić Z. Computer generated vegan menus: The importance of food com-
position data base choice. Journal of Food Composition and Analysis. 37, 112–118 (2015).

[16] Masset G., Monsivais P., Maillot M., Darmon N., Drewnowski A. Diet optimization methods can help
translate dietary guidelines into a cancer prevention food plan. The Journal of Nutrition. 139 (8), 1541–
1548 (2009).

[17] Donati M., Menozzi D., Zighetti C., Rosi A., Zinetti A., Scazzina F. Towards a sustainable diet combining
economic, environmental and nutritional objectives. Appetite. 106, 48–57 (2016).

[18] Van Mierlo K., Rohmer S., Gerdessen J. C. A model for composing meat replacers: Reducing the environ-
mental impact of our food consumption pattern while retaining its nutritional value. Journal of Cleaner
Production. 165, 930–950 (2017).

[19] Taniguchi E. Concepts of city logistics for sustainable and liveable cities. Procedia – Social and Behavioral
Sciences. 151, 310–317 (2014).

[20] Koenen M. F., Balvert M., Fleuren H. Bi-objective goal programming for balancing costs vs. nutritional
adequacy. Frontiers in Nutrition. 9, 1056205 (2022).

[21] Bas E. A robust optimization approach to diet problem with overall glycemic load as objective function.
Applied Mathematical Modelling. 38 (19–20), 4926–4940 (2014).

Mathematical Modeling and Computing, Vol. 13, No. 1, pp. 1–32 (2026)



30 Bouhanch Z., Ahourag A., Lahbabi H., El Moutaouakil K., Ouzineb M., Cheggour M., Chellak S., et al.

[22] El Moutaouakil K., Ahourag A., Chakir S., Kabbaj Z., Chellack S., Cheggour M., Baizri H. Hybrid firefly
genetic algorithm and integral fuzzy quadratic programming to an optimal Moroccan diet. Mathematical
Modeling and Computing. 10 (2), 338–350 (2023).

[23] El Moutaouakil K., Ahourag A., Chellak S., Cheggour M., Baizri H., Bahri A. Quadratic Programming
and Triangular Numbers Ranking to an Optimal Moroccan Diet with Minimal Glycemic Load. Statistics,
Optimization & Information Computing. 11 (1), 85–94 (2023).
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Навчання без учителя для створення оптимальних
персоналiзованих дiєтичних меню для профiлактики дiабету та

серцево-судинних захворювань

Буханш З.1, Ахураг А.1, Лахбабi Х.1, Ель Мутавакiль К.1,
Узiнеб М.2, Шегур М.3, Шеллак С.3, Байзрi Х.4

1Лабораторiя математики та науки про данi, Полiдисциплiнарний факультет Тази,
Унiверситет Сiдi Мохамеда Бен Абделлаха у Фесi, Таза, а/с 1223, Марокко

2Нацiональний iнститут статистики та прикладної економiки, Рабат, Марокко
3Кафедра бiологiї, Унiверситет Кадi Айяд, Семлалiя, Марракеш 40000, Марокко

4Лабораторiя бiонаук та дослiджень здоров’я,
Вiддiлення ендокринологiї, дiабету та метаболiчних захворювань,

Вiйськовий госпiталь Авiценни, Факультет медицини та фармацiї (FMP),
Унiверситет Кадi Айяд (UCA), Марракеш, Марокко

Здоровi дiєти можуть уповiльнити прогресування захворювання, але їхня ефектив-
нiсть може знизитися. Пацiєнти часто вiдмовляються вiд цих дiєт через обмежений
вибiр продуктiв, несмачнi страви та знижену фiзичну активнiсть внаслiдок скорочен-
ня калорiй. Щоб вирiшити цю проблему, розроблено iнтелектуальну систему балансу
харчування для запобiгання кардiодiабетичним захворюванням. Ця система створює
дiєти, якi оптимiзують контроль рiвня холестерину та глiкемiї, за допомогою таких
крокiв: (a) характеристика марокканських продуктiв на основi 19 поживних речовин
та їх глiкемiчного навантаження; (b) класифiкацiя продуктiв за допомогою моделi
гаусової сумiшi; (c) моделювання оптимальної дiєти за допомогою нечiткої матема-
тичної моделi з використанням рекомендацiй WHO, USDA та FAO; (d) розв’язання
моделi за допомогою генетичного алгоритму; (e) перетворення порцiй та груп про-
дуктiв харчування для дотримання обмежень та (f) розв’язання остаточної моделi за
допомогою методу зворотного вiдстеження. Цю стратегiю реалiзовано на основi ос-
новних продуктiв, що споживаються в Марокко, враховуючи рiзнi рiвнi довiри (0,25,
0,5, 0,75) щодо глiкемiчного навантаження цих продуктiв. Результати показують, що
iндивiдуальнi штучнi дiєти вiдповiдають рекомендацiям WHO, USDA, FAO та DGA.
Меню є гнучкими, що дозволяє замiнювати дорогi або рiдкiснi продукти бiльш до-
ступними та легкодоступними альтернативами без шкоди для якостi дiєт.

Ключовi слова: модель гауссової сумiшi (GMM); метод нечiтких C-середнiх
(FCM); Функцiя ранжування; глiкемiчне навантаження; загальний холестерин; ге-
нетичний алгоритм (GA); нечiтке оптимiзацiйне програмування (FOP); програму-
вання задоволення обмежень (CSP).
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