silicon surface

Еlectrodeposition of silver nanoparticles on siliconesurface in dimethylformamide solutions of (NH4)[Ag(CN)2]

The article presents the results of studies of electrochemical deposition of silver nanoparticles (AgNPs) on the silicon surface in dimethylformamide solutions of 0.025M; 0.05M; 0.1M (NH4)[Ag(CN)2]. Combination of a pulsed electrolysis mode and an organic aprotic solvent medium (DMF) ensures the formation of 50-150 nm spherical AgNPs with uniform distribution over the silicon surface. It is shown that the main factors influencing the morphology and size of silver nanoparticles are the value of the cathode potential, the concentration of ions [Ag(CN)2]- and the duration of electrolysis.

Influence of galvanic replacement conditions in DMSO solutions on the sizes of gold nanoparticles fixed on the surface of silicon

The controlled synthesis of parts of noble metals of a given morphology, shape, size and distribution on the floor emphasizes the important prerequisite for the creation of complex structures, for example nanowire, are one of the most promising materials for the creation of modern devices.

DEPOSITION OF NANOSTRUCTURED SILVER SEDIMENT ON SILICON SURFACE BY GALVANIC REPLACEMENT

One of the promising methods of such a modification is a method of galvanic replacement, which is characterized by wide possibilities of controlled influence on the morphology of the deposited nanostructured metal. The deposition of silver by galvanic replacement is most studied in aqueous solutions of AgNO3 in the presence of HF. However, the hydrolysis of formed compounds of silicon, the change in pH, and the electrical renewal of hydrogen do not always provide a controlled formation of metal nanoparticles.