difficult-to-cut materials

INCREASE PRODUCTIVITY OF HARD-TO-MACHINE MATERIALS BY PREVENTIVE HEATING OF THE WORKPIECE

The possibility of increasing productivity by increasing the cutting parameters of difficult-to-machine materials, using expensive tool materials, etc. is an extensive trend of innovative improvement and is accompanied by high costs of operations and the need to provide expensive equipment. The article argues that a more effective method of improving machining operations is the use of the workpiece Turning with Preventive Heating (TPH) method.

ANALYSIS OF THERMODYNAMIC, STRESS-STRAIN, AND LOADED STATES OF CHROMIUM-NICKEL ALLOY WORKPIECES USING MACHINING PROCESS SIMULATION IN ADVANTAGE SOFTWARE

Machining difficult-to-cut materials, which include most high-alloy chromium-nickel steels and alloys, requires optimization of cutting parameters, correct application of tool materials, cutting blade geometry, etc. The particular relevance of a scientifically based analysis in addressing these issues is due to the large costs incurred in machining products made from such materials. The possibilities of experimental research to provide correct technological recommendations are quite limited.

Research and simulation of the machining process of difficult-to-cut materials

Heat-resistant and high-alloy steels and alloys are difficult materials to machine. Optimizing the cutting parameters for such materials is a complex and multi-factorial technological process planning task. The paper describes the method of analysis of loading, thermodynamic and stress-strain state of a workpiece while cutting of typical representative of hard-to-cut materials (chromium-nickel alloy IN718) using finite element simulation. Influence of feed rate on cutting force and temperature in the zone of chip formation is given.