Improvement of the Method of Calculating Heat Transfer Coefficients Using Glycols Taking into Account Surface Forces of Heat Carriers
This study compares the classic calculating method of the heat transfer coefficients of the shell-and-tube heat exchanger tubes using the classic Nusselt, Reynolds, and Prandtl similarity numbers with a new method that takes into account the coefficients of surface tension of heat carriers, their transitional, turbulent viscosity and thermal conductivity, as well as the average thickness of the laminar boundary layer (LBL). The classic method shows a better efficiency of water as a heat carrier com-pared to a 45% aqueous solution of propylene glycol.