Prompt Engineering

Prompting Techniques for Enhancing the Use of Large Language Models

The work is dedicated to the study of fundamental prompting techniques to improve the efficiency of using large language models (LLMs). Significant attention is given to the issue of prompt engineering. Various techniques are examined in detail: zero-shot prompting, feedback prompting, few-shot prompting, chain-of-thought, tree of thoughts, and instruction tuning. Special emphasis is placed on Reaction & Act Prompting and Retrieval Augmented Generation (RAG) as critical factors in ensuring effective interaction with LLMs.

UNDERSTANDING LARGE LANGUAGE MODELS: THE FUTURE OF ARTIFICIAL INTELLIGENCE

The article examines the newest direction in artificial intelligence - Large Language Models, which open a new era in natural language processing, providing the opportunity to create more flexible and adaptive systems. With their help, a high level of understanding of the context is achieved, which enriches the user experience and expands the fields of application of artificial intelligence. Large language models have enormous potential to redefine human interaction with technology and change the way we think about machine learning.