Bases of Digital Signature Using Elliptic-Curve Crypto Processor Over Galois Field (2m)

2009;
: cc. 86 - 93
Authors: 

Rodrigue Elias

Computers Department, Institute of Computer Technology, Automation and Metrology, Lviv, Polytechnic National University

Визначено основи для створення нової послідовної архітектури процесора для виконання додавання і скалярного множення точок еліптичних кривих.

In this study, the procedure is to design a base for new hardware processor to perform elliptic curve addition and scalar multiplication. It will be based on a serial architecture.

  1. I. BIEHL, B. MEYER, AND V. MULLER. Differential fault analysis on elliptic curve crypto- systems. Advances in Cryptology — CRYPTO 2000, 131–146, 2000.
  2. FIPS 180-2. Secure Hash Standard. Federal Information Processing Standards Publication 180-2, National Institute of Standards and Technology, 2002.
  3. FIPS 197. Advanced Encryption Standard (AES). Federal Information Processing Standards Publication 197, National Institute of Standards and Technology, 2001.
  4. FIPS 198. HMAC — Keyed-Hash Message Authentication. Federal Information Processing Standards Publication 198, National Institute of Standards and Technology, 2002.
  5. NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY. NIST Special Publication 800-56: Recommendation on key establishment schemes, Draft 2.0. Available from http: //csrc.nist.gov/CryptoToolkit/tkkeymgmt.html, January 2003.
  6. D. Hankerson, A. Menezes, S. Vanstone. Guide to Elliptic Curve Cryptography. Springer, N.Y. 2004.
  7. IEEE P1363A. Standard Specifications for Public-Key Cryptography. Additional Techniques, 2003.
  8. K. Rabah. Theory and Implementation of Elliptic Curve Cryptography. Journal of Applied Sciences, 2005. Asian Network for Scientific Information.
  9. K. Rabah. Theory and Implementation of Data Encryption Standard. Information Technology Journal, 2005.