Розглянуто питання використання багатокритеріальних генетичних алгоритмів в задачах прийняття рішень. Були детально досліджені алгоритми: NSGA-II, AMGA-2 та ε-MOEA. На тестовому прикладі було розглянуто обчислювальну складність алгоритмів та визначені переваги і недоліки іх використання.
The article deals with the use of genetic multi-objective algorithms in problems of decision making. Were investigated algorithms: NSGA-II, AMGA-2 and ε-MOEA. In the test case was considered computational complexity of algorithms and identified advantages and disadvantages of their use.
- Субботін С. О., Олійник А. О., Олійник О. О. Неітеративні, еволюційні та мультиагентні методи синтезу нечіткологіних і нейромережних моделей: Монографія. – Запоріжжя: ЗНТУ, 2009. – 375 с.
- A. Konak, D. W. Coit, A. E. Smith. Multi-objective optimization using genetic algorithms: A tutorial. Reliability Engineering and System Safety 91 (2006) 992-1007.
- Holland J. Adaptation in natural and artificial systems. Ann Arbor: University of Michigan Press; 1975.
- Goldberg D. Genetic algorithms in search, optimization, and machine learning. Reading, MA: Addison-Wesley; 1989.
- Schaffer J. Multiple objective optimization with vector evaluated genetic algorithms. In: Proceedings of the international conference on genetic algorithm and their applications, 1985.
- E. Zitzler, L. Thiele. Multi-objective evolutionary algorithms: a comparative case study and the strength Pareto approach. IEEE Trans Evol Comput1999; 3(4): 257–71.
- H. Lu, G. Yen. Rank-density-based multi-objective genetic algorithm and benchmark test function study. IEEE Trans Evol Comput 2003; 7(4): 325–43.
- D. Goldberg, J. Richardson. Genetic algorithms with sharing for multimodal function optimization. In: Genetic algorithms and their applications: proceedings of the second international conference on genetic algorithms, 28–31 July, 1987. Cambridge, MA, USA: Lawrence Erlbaum Associates; 1987.
- C. Fonseca, P. Fleming. Multiobjective genetic algorithms. In: IEE colloquium on ‘Genetic Algorithms for Control Systems Engineering’ (Digest No. 1993/130), 28 May 1993. London, UK: IEE; 1993.
- E. Zitzler, M. Laumanns, L. Thiele. SPEA2: improving the strength Pareto evolutionary algorithm. Swiss Federal Institute Techonology: Zurich, Switzerland; 2001.
- K. Deb, A. Pratap, S. Agarwal, T. Meyarivan. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 2002; 6(2): 182–97.
- H. Lu, G. Yen. Rank-density-based multiobjective genetic algorithm and benchmark test function study. IEEE Trans Evol Comput 2003; 7(4): 325–43.
- J. Morse. Reducing the size of the non-dominated set: pruning by clustering. Comput Oper Res 1980; 7(1–2): 55–66.
- K. Deb, S. Agrawal, A. Pratap, T. Meyarivan. A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II. Kanpur genetic algorithms laboratory report number 200001: Indian institute of technology Kanpur.
- N. Srinivas, and K. Deb. (1995) Multi-Objective function optimization using non-dominated sorting genetic algorithms, Evolutionary Computation, 2(3): 221–248.
- E. Zitzler, K. Deb, and L. Thiele. Comparison of multiobjective evolutionary algorithms: Empirical results. Evolutionary Computation.
- E. Zitzler, and Thiele, L. (1998) Multiobjective optimization using evolutionary algorithms— A comparative case study. In Eiben, A. E., Back, T., Schoenauer, M., and Schwefel, H.-P., editors, Parallel Problem Solving from Nature, V, pages 292–301, Springer, Berlin, Germany.
- J. Knowles, and D. Corne. (1999) The Pareto archived evolution strategy: A new baseline algorithm for multiobjective optimisation. Proceedings of the 1999 Congress on EvolutionaryComputation, Piscatway: New Jersey: IEEE Service Center, 98–105.
- Rudolph, G. (1999) Evolutionary search under partially ordered sets. Technical Report No. CI-67/99, Dortmund: Department of Computer Science/LS11, University of Dortmund, Germany.
- S. Tiwari, P. Koch, G. Fadel, K. Deb. AMGA: An archive-based micro genetic algorithm for multi-objective optimization. GECCO’08, July 12-16, 2008, Atlanta, Georgia, USA.
- R. Ooka and G. Kayo, Development of Optimal Design Method for Distributed Energy System (Part. 3) Sensitivity Analysis with GA Parameters, SHASE Annual Meeting, 2008.