PHASE VAPOR–LIQUID EQUILIBRIUM FOR THE SOLUTIONS OF DIETHYL SELENIDE AND DIETHYLZINC

2021;
: 10-16
1
Lviv Polytechnic National University
2
Lviv Polytechnic National University
3
Lviv Polytechnic National University
4
Lviv Polytechnic National University
5
Lviv Polytechnic National University

Using a semi-empirical Wilson’s model, the vapor-liquid equilibrium in the diethylzinc - diethyl selenide” system is described: the activity coefficients of the solution components, the separation coefficient, the excess functions of the solution (HE, GE, TSE) are calculated, and isothermal P-X diagrams are obtained. The parameters of the Wilson’s model were calculated on the basis of our data on measuring the temperature dependence for saturated vapor pressure of high-purity samples of diethylzinc, diethyl selenide and their equimolecular solution using iterations from the mathematical software package Mathsad 14. Peculiarities of intermolecular interaction in the “diethylzinc – diethyl selenide” system and the presence of a negative deviation from Raoul's law have been found. The studied system is homogeneous in the whole concentration range. The concentration dependence of the enthalpy of mixing is alternating for the researched temperature range (280-340 K).

1.            Mukherjee, A. J., Zade, S. S., Singh, H. B., & Sunoj, R. B. (2010). Organoselenium Chemistry: Role of Intramolecular Interactions. Chemical Reviews, 110(7), 4357-4416. doi:10.1021/cr900352j
https://doi.org/10.1021/cr900352j
2.            Bacsa, J., Hanke, F., Hindley, S., Odedra, R., Darling, G. R., Jones, A. C., & Steiner, A. (2011). The Solid-State Structures of Dimethylzinc and Diethylzinc. Angewandte Chemie International Edition, 50(49), 11685-11687. doi:10.1002/anie.201105099
https://doi.org/10.1002/anie.201105099
3.            Haaland, A., Green, J. C., Mcgrady, G. S., Downs, A. J., Gullo, E., Lyall, M. J., . . . Østby, K. (2003). The length, strength and polarity of metal-carbon bonds: Dialkylzinc compounds studied by density functional theory calculations, gas electron diffraction and photoelectron spectroscopy. Dalton Trans., (22), 4356-4366. doi:10.1039/b306840b
https://doi.org/10.1039/B306840B
4.            Lunøe, K., Skov, S., Gabel-Jensen, C., Stürup, S., & Gammelgaard, B. (2010). A method for analysis of dimethyl selenide and dimethyl diselenide by LC-ICP-DRC-MS. Analytical and Bioanalytical Chemistry, 398(7-8), 3081-3086. doi:10.1007/s00216-010-4242-2
https://doi.org/10.1007/s00216-010-4242-2
5.            Guadayol, M., Cortina, M., Guadayol, J. M., & Caixach, J. (2016). Determination of dimethyl selenide and dimethyl sulphide compounds causing off-flavours in bottled mineral waters. Water Research, 92, 149-155. doi:10.1016/j.watres.2016.01.016
https://doi.org/10.1016/j.watres.2016.01.016
6.            Guo, L., Jury, W. A., & Frankenberger, W. T. (2000). Measurement of the Henrys Constant of Dimethyl Selenide as a Function of Temperature. Journal of Environmental Quality, 29(5), 1715-1717. doi:10.2134/jeq2000.00472425002900050044x
https://doi.org/10.2134/jeq2000.00472425002900050044x
7.            Karvekar, M., Das, A., & Narajji, C. (2007). Biological importance of organoselenium compounds. Indian Journal of Pharmaceutical Sciences, 69(3), 344. doi:10.4103/0250-474x.34541
https://doi.org/10.4103/0250-474X.34541
8.            Baev, A. K. (1987). Khimiia hazoheterohennyx sistem elementoorganicheskikh soedineniy. Minsk: Nauka y tekhnika.
9.            Thompson, H. W., & Linnett, J. W. (1936). The vapour pressures and association of some metallic and non-metallic alkyls. Transactions of the Faraday Society, 32, 681-685. doi:10.1039/tf9363200681
https://doi.org/10.1039/tf9363200681
10.          Соколовский,А.Е., Баев, А.К. (1984) Термодинамическое изучение процесса испарения диметил- и диэтил цинка. Журнал общей химии, 54(1), 103-106.
11.          Gerasymchuk, S. I., Poliuzhyn, I. P., Melnyk, H. V., Pavlovskyi, Y. P., & Sergeyev, V. V. (2019). Phase Vapor-Liquid Equilibrium for the Solutions of Dimethylzinc and Dimethyl Selenide. Chemistry, Technology and Application of Substances, 2(2), 1-6. doi: 10.23939/ctas2019.02.001
https://doi.org/10.23939/ctas2019.02.001
12.          Gerasymchuk, S. I., Poliuzhyn, I. P., Melnyk, H. V., Pavlovskyi, Yu. P., Sergeiev, V. V. (2020). Fazova rivnovaga para-ridyna rozchyniv dymetylcynku ta dymetylselenu. Ximiia, tekhnologiia rechovyn ta ikh zastosuvannia. 3(1), 1-8. doi: 10.23939/ctas2020.01.001
https://doi.org/10.23939/ctas2020.01.001
13.          Gerasimchuk, S. I., Pavlovskii, Y. P., & Van-Chin-Syan, Y. Y. (2012). Thermodynamics of the evaporation of dimethylzinc, dimethylselenium, and their equimolecular solutions. Russian Journal of Physical Chemistry A, 86(10),1500-1506. doi:10.1134/s003602441210010x
https://doi.org/10.1134/S003602441210010X
14.          Gerasimchuk, S. I., Pavlovskii, Y. P., Sobechko, I. B., & Van-Chin-Syan, Y. Y. (2014). Thermodynamics of the vaporization of alkyl compounds of zinc, selenium, cadmium, tellurium, and their equimolecular solutions. Russian Journal of Physical Chemistry A, 88(3), 365-371. doi:10.1134/s0036024414030054
https://doi.org/10.1134/S0036024414030054
15.          Poling, B. E., Prausnitz, J. M., & OConnell, J. P. (2001). The properties of gases and liquids. New York: McGraw-Hill
16. https://www.sigmaaldrich.com/UA/en/ product/ALDRICH/550434
17. The Merck Index. 10th ed. Rahway, New Jersey: Merck Co., Inc., 1983., p. 455
18.          Naryshkin, D. G. (2016). Khimicheskaia termodinamika s Mathcad. Moskva: RIOR: INFRA-M.