THERMODYNAMIC PARAMETERS OF 5-(NITROPHENYL)-FURAN-2-CARBOXYLIC ACIDS SOLUTIONS IN PROPAN-2-OL

2023;
: 15-21
1
Ivan Franko National University of Lviv
2
National University Lviv Polytechnic
3
Lviv Polytechnic National University

Based on the temperature dependence of the solubility of 5-(2-nitrophenyl)-furan-2-carboxylic acid, 5-(3-nitrophenyl)-furan-2-carboxylic acid and 5-(4-nitrophenyl)-furan-2-carboxylic acid in propan-2-ol, the enthalpy and entropy of their dissolution were calculated. Taking into account the enthalpy and entropy of melting recalculated to 298 K, the enthalpies and entropies of mixing were calculated. The dependence of the solubility of carboxyl-containing substances at 298 K on their melting point was determined.

1. M. Sun, C. Ma, S.-J. Zhou, et al. (2019) Catalytic Asymmetric (4+3) Cyclizations of in situ generated ortho-quinone methides with 2- indolylmethanols. Angew. Chem. Int. Ed. 58. 8703−8708. https://doi.org/10.1002/ange.201901955
2. F. Jiang, G.-Z. Luo, Z.-Q. Zhu et al. (2018) Application of naphthylindole-derived phosphines as organocatalysts in [4 + 1] cyclizations of o-quinone methides with morita-baylis-hillman carbonates. J. Org. Chem. 83. 10060−10069. https://doi.org/10.1021/acs.joc.8b01390
3. C.-S. Wang, Y.-C. Cheng, J. Zhou, et al. (2018) Metal-catalyzed oxa-[4+2] cyclizations of quinone methides with alkynyl benzyl alcohols. J. Org. Chem. 83. 13861−13873. 
https://doi.org/10.1021/acs.joc.8b02186
4. F. Jiang, D. Zhao, X. Yang, et al. (2017) Catalyst-controlled chemoselective and enantioselective reactions of tryptophols with isatin-derived imines. ACS Catal. 7. 6984−6989. 
https://doi.org/10.1021/acscatal.7b02279
5. A.Karateev, A.Koryagin, D.Litvinov (2008) New network polymers based on furfurylglysidil ether. Chemistry& Chemical Technology. 1. 19-23.
https://doi.org/10.23939/chcht02.01.019
6. Y.Wang, S. Furukawa, X. Fu, N. Yan (2019) Organonitrogen chemicals from oxygen-containing feedstock over heterogeneous catalysts. ACS Catal. 
https://doi.org/10.1021/acscatal.9b03744
7. S. M. A. Hakim Siddiki, T. Toyao, K.-i. Shimizu (2018) Acceptorless dehydrogenative coupling reactions with alcohols over heterogeneous catalysts. Green Chem. 20. 2933-2952. 
https://doi.org/10.1039/C8GC00451J
8 B. H. Lipshutz (1986) Five-membered heteroaromatic rings as intermediates in organic synthesis Chem. Rev. 86. 795−819.
https://doi.org/10.1021/cr00075a005
9. Gandini M. N. Belgacem (1997) Furans in polymer chemistry. Progress in Polymer Science 22, (6). 1203-1379.
https://doi.org/10.1016/S0079-6700(97)00004-X
10. Meng Chen, Qingsong Yu, Hongmin Sun (2013) Novel strategies for the prevention and treatment of biofilm related infections. Int. J. Mol. Sci. 14. 18488-18501. 
https://doi.org/10.3390/ijms140918488
11. B.S. Holla, P.M. Akberali, M.K. Shivananda (2000) Studies on arylfuran derivatives: part X Synthesis and antibacterial properties of arylfuryl-delta2-pyrazolines. Farmaco. 55, (4). 256-263 https://doi.org/10.1016/S0014-827X(00)00030-6
12. Κ Subrahmanya Bhat, Β Shivarama Holla (2003) Facile synthesis of 5-aryl-furan-2-aldehyde and 5-aryl-furan-2- carboxylic acid using ceric ammonium nitrate. Heterocyclic communications. 6, (6). 625-628. https://doi.org/10.1515/HC.2003.9.6.625
13. Ridka, O., Matiychuk, V., Sobechko, I., Tyshchenko, N., Novyk, M., Sergeev, V., & Goshko, L. (2019). Thermodynamic properties of methyl 4-(4-methoxyphenyl)-6-methyl-2-oxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate in Organic Solutions. French-Ukrainian Journal of Chemistry, 7(2), 1-8. https://doi.org/10.17721/fujcV7I2P1-8
14. I. B. Sobechko, Yu. Ya. Van-Chin-Syan, Yu. I. Gorak, et al. (2015) Thermodynamic characteristics of the melting and dissolution of crystalline furan-2-carboxylic and 3-(furyl)-2-propenoic in organic solvent. Russian Journal of Physical Chemistry (A). 89, (6). 919-925. https://doi.org/10.1134/S003602441506028X
15. I. Sobechko, V. Dibrivnyi, Y. Horak, et al. (2017) Thermodynamic properties of solubility of 2-methyl-5-arylfuran-3-carboxylic acids in organic solvents. Chemistry & Chemical Technology. 11, (4). 397-404. https://doi.org/10.23939/chcht11.04.397
16. I. Sobechko, Y. Horak, V. Dibrivnyi, et al. (2019)Thermodynamic properties of 2-methyl-5-arylfuran-3 carboxylic acids chlorine derivatives in organic solvents. Chemistry & Chemical Technology. 13, (3). 280-287. https://doi.org/10.23939/chcht13.03.280
17. А. S. Marshalek, R. T. Prokop, I. B. Sobechko et al. (2017) Thermodynamic properties of some para-nitro-phenyl disubstituted furan derivatives. Questions of chemistry and chemical technology. 2, (111). 36-41.
18. Li, Z., Guo, J., Hu, B., Zhou, C., Zheng, Y., Zhao, H., & Li, Q. (2022). Solubility measurement, modeling, and solvent effect of M-hydroxyacetophenone in ten pure and binary mixed solvents from T = (289.15-325.15) K. Journal of Molecular Liquids, 353, 118798. https://doi.org/10.1016/j.molliq.2022.118798
19. Maharana, A., & Sarkar, D. (2019). Solubility measurements and thermodynamic modeling of pyrazinamide in five different solvent-antisolvent mixtures. Fluid Phase Equilibria, 497, 33-54. https://doi.org/10.1016/j.fluid.2019.06.004
20. Huang, W., Wang, H., Li, C., Wen, T., Xu, J., Ouyang, J.; Zhang, C. (2021). Measurement and correlation of solubility, Hansen solubility parameters and thermodynamic behavior of clozapine in eleven mono-solvents. Journal of Molecular Liquids, 333, 115894. https://doi.org/10.1016/j.molliq.2021.115894
21. Sobechko I. B. Thermodynamic properties of oxygen- and nitrogen-containing heterocyclic compounds and their solutions. : dis. … Doc. of Chem. Sci. : 02.00.04. Lviv, 2021. 525 p.
22. Wu, Y., Zhang, X., Di, Y., Zhang, Y. (2017). Solubility determination and modelling of 4-Nitro-1,2-phenylenediamine in eleven organic solvents from T=(283.15 to 318.15) K and thermodynamicproperties of solutions. The Journal of Chemical Thermodynamics, 106, 22-35. https://doi.org/10.1016/j.jct.2016.11.014
23. Li, X., Wang, M., Du, C., Cong, Y., Zhao, H. (2017). Thermodynamic functions for solubility of 3-nitro- O -toluic acid in nine organic solvents from T = (283.15 to 318.15) K and apparent thermodynamic properties of solutions. The Journal of Chemical Thermodynamics, 110, 87-98. https://doi.org/10.1016/j.jct.2017.02.017
24. Wu, Y., Di, Y., Zhang, X., Zhang, Y. (2016). Solubility determination and thermodynamic modeling of 3-methyl-4-nitrobenzoic acid in twelve organic solvents from T = (283.15-318.15) K and mixing properties of solutions. The Journal of Chemical Thermodynamics, 102, 257-269.https://doi.org/10.1016/j.jct.2016.07.023