Application of remote sensing methods to evaluation of soil fertility indicators of Zakarpattia lands

1
National Aviation University

Aim. Identification and evaluation of the soil fertility indicators based on processing of the data of on-ground and remote sensing research on the agricultural lands of different landscape zones in Zakarpattia. Меthodology. The proposed methodology of the laws of physics that describe the relation between the content of humus in soil and spectral energy brightness of soil which is interpreted based on multi-spectral aerospace images, includes three research approaches. The first approach refers to research and identification of statistical linear dependencies of the actual humus level in soil and the spectral energy brightness of soil which was obtained based on processing of the multi-spectral aerospace images. The second approach lies in developing new models that are based on linear dependencies of the actual humus level in soil and the spectral energy brightness of soil and infrared electromagnetic of electromagnetic emission. The third approach is founded on application of degree models that in the best manner describe such dependence. From the point of view of mathematics, importance of the three stages was validated using identification of significance for the correlation coefficients, confidence intervals, mean square deviations of the calculated humus level indicator from the actual humus level indicator, and application of the Fisher coefficient. Findings. In the course of identification and research of statistical linear dependencies of spectral brightness of channels and the relevant humus level indicators in soil it was investigated that the closest inverse linear dependence was detected in the red (Red) spectral channel of the visible range. In application of the second approach, it was revealed that to identify and evaluate the humus level in soil the model which mediates the red and infrared spectral channels based on the relation of the close infrared channel to the red channel, is the most appropriate. As a result of trial of the third approach it was determined that application of power law model includes only the red spectral channel. Scientific novelty. It was stated that using the data on remote sensing of the Earth to identify and evaluate the quantitative indicators of humus level content in soil in the landscape areas of Zakarpattia it is most appropriate to apply the models designed based on the data on spectral energy brightness in the visible and infrared spectral ranges, since the mean square deviation of the estimated humus content level in soil from the actual humus level indicator in these models is minimal, whereas the probability is the highest. Practical significance. This approach enables quick and reliable collection of information on the quantitative indicators of the humus level content in soil for rational managerial decision-making on applicability agrotechnical means to for prevention of soil fertility reduction in relation to landscape zones of Zakarpattia.

1. Achasov V. А., Bidolakh D. I. Ispolzovaniye materialov kosmicheskoy i nazemnoy tsifrovoy fotosyemok dlya opredeleniya soderzhaniya gumusa v pochvakh. [The use of material from space and digital photography to determine the content of humus in soils]. Pochvovedeniye [Soil Science]. 2008, no. 3, pp. 280–286.
2. Yu.Yu. Zvit pro vykonannya proektno-tekhnolohichnykh ta naukovo-doslidnykh robit u 2013 rotsi; za red. Yu. Yu. Bandurovycha [Report on performance of design, technological and research works in 2013 for ed. Bandurovch]. Uzhorod.: «Karpaty», 2014, 91p.
3. Bardysh B., Burtynska Kh. Vykorystannya vehetatsiynykh indeksiv dlya identyfikatsiyi obʺyektiv zemnoyi poverkhni [Using vegetation indices to identify objects on the earth surface]. Suchasni dosyahnennya heodezychnoyi nauky ta vyrobnytstva [Modern achievements in geodetic science and industry]. 2014, issue 2, pp. 82–88.
4. Kh.V., Dolynska І.V. Vplyv atmosfery na kosmichne zobrazhennya ta pryntsypy yiyi vrakhuvannya [The influence of the atmosphere on the space image and the principles of its consideration] Heodeziya, kartohrafiya i aerofotoznimannya [Geodesy, Cartography and Aerial Photography]. Lviv, 2013, issue 78, pp. 89–96.
5. S. H., Abramov D. А. Vykorystannya suputnykovykh znimkiv Landsat 7 dlya monitorynhu humusnoho stanu temno-kashtanovykh hruntiv [Using satellite images of Landsat 7 to monitoring the humus state of dark soils]. Visnyk ahrarnoyi nauky Prychornomorya [Bulletin of the Agrarian Science of the Black Sea Region]. 2012, issue 3, pp. 113–118.
6. S. H., Abramov D. А. Monitorynh vmistu humusu u chorniozemi pivdennomu z vykorystannyam bahato spektralnykh znimkiv suputnyka Landsat: prostorovi ta tymchasovi aspekty [Monitoring of humus content in south chernozem using satellite spectral images of Landsat: spatial and temporal aspects]. Hruntoznavstvo [Soil Science]. 2016, Vol. 17, no. 1–2, pp. 2–30.
7. Gao B. C. NDWI. A normalizeֺd differencֺe water index for remote sensing of vegetatioֺn liquid water from space. Remote Sensing of Environmeֺnt. 1996, no. 58, pp. 257– 266.
8. Gebrin L. V., Zeleznyak O. O. , Velikodskֺy Y. I. , Banduroviֺch Y. Y. Comprehenֺsive technique for constitutֺion estimatioֺn based on satellite observatiֺon methods. Proceedinֺgs of the National Avation Universitֺy. 2015, no. 3 (64), pp. 91–97.
9. Gebrin L. V., Sakhatskyi О. І Zastosuvannya danykh dystantsiynykh aerokosmichnykh metodiv dlya uzahalnenoi otsinky stanu hruntiv rehionu [Application of remote sensing data for overall assessment of region soils]. Heoinformatyka [Geoinformatica]. 2015, issue. no. 3 (55), pp. 68–76.
10. Gorbane G., Raclbt D., Jacob F., Albergelj J., Andrieux P. Remote sensing of soil surface characterֺistics from a multiscalֺe classificֺation approach [text]. Gorbane. CATENA, 2008, no. 75, Issue 3, pp. 308–318.
11. Gmurman V. Ye. Teoriya veroyatnosti i matematicheskaya statistika [Probability theory and mathematical statistics]. Мoscow: Vyssh.shk., 2003, 479 p.
12. V. А., Fedulov Yu. P., Ostrovskiy Н. V. i dr. Raschet soderzhaniya gumusu s ispol'zovaniyem dannykh distantsionnogo zondirovaniya [Humus content calculation the method with use of remote sensing of the earth]. Nauchnyy zhurnal KubGАU [Proceedinֺgs of the Kuban State Agrarian University]. 2013, no. 92(08), pp. 671–681.
13. V. V. Monitorinֺg pochv Ukrainy. Kontseptsiya, predvaritel'nyye rezul'taty, zadachi Monitoring of soil in Ukraine. Concept, preliminary results, tasks]. Kharkov: Antikva, 2002, 428 p.
14. Panas R. М., Мalanchuk М. Suchasni problemy zdiysnennya monitorynhu gruntovoho pokryvu Ukrayiny [The modern problems of monitoring of the soil cover of Ukraine]. Heodeziya, kartohrafiya i aerofotoznimannya [Geodesy, Cartography and Aerial Photography]. Lviv, 2013, no..78, pp. 201–206.
15. Richter R., Schlapfer D. Atmospheric and topographic correction for satellite imagery (Atcor-2/3 users guide version 9.0.2). Switzerland: DLR IB, 2016, 263 p.
16. Richards J. A., Jia X. Remote Sensing Digital Image Analysis. Berlin: Springer-Verlag, 2006, 439 p.
17. О. І. Dosvid vykorystaֺnnya suputnykoֺvykh danykh dlya otsinky stanu gruntiv z metoyu rozvyazannya pryrodoreֺsursnykh zadach [The experience using satellite data to assess the state of the soil in order to solve the nature of the problem]. Dopovidi Natsionalnoyi akademiyi nauk Ukrayiny [Reports of the National Academy of Sciences of Ukraine]. 2008, no. 3, pp. 109–115
18. О. І. Metolohiya vykorystaֺnnya materialiֺv bahatospeֺktralʹnoyi kosmichnoyi zyomky dlya vyrishennya hidroheolohichnykh zadach: avtoref. dys. na zdobuttya nauk. stupenya dokt. heol. nauk: spets. 05.07.12 «Dystantsiyni aerokosmichni doslidzhennya» [The methodologist using of material in a multifaceted space survey to solve the hydrogeological problems. Author's abstract. dis for obtaining sciences. degree doc. geol. Sciences: special 07.05.12 "Remote aerospace exploration"]. Кyiv, 2009, 40 p.
19. Sadeghi M., S. Jons, W. Philpot. A linear physically – based model for remote sensing of soil moisture using short wave infrared bands. Remote Sensing of Environmeֺnt, 2015, no. 164, pp. 66-76.
20. Serbin G., S. Craig, E. Raymond, B. James. Effects of soil composition and mineralogy on remote sensing of crop residue cover. Remote Sensing of Environmeֺnt, 2009, no. 113, pp. 224–238.
21. South S., J. Qi, D. P. Lusch. Optimal classificֺation methods for mapping agricultuֺral tillage practices. Remote Sensing of Environmeֺnt, 2004, no. 91,pp. 90–97.
22. Schmugge T. Microwave remote sensing of soil hydraulic properties. Soil hydrology, Land use and Agriculture. 2011, no. 19, pp. 415–421.
23. А. V., Lyndin М. А. Sopryazhennֺoye izucheniye chernozemoֺv Donbassa nazemnymi i distantsioֺnnymi metodami [The study of chernozem in the Donets basin and by remote methods]. Pochvovedenie [Soil Science]. 2001, no. 9, pp. 1037–1044.
24. S. R. Vykorystannya bahatospektralnoho kosmichnoho skanuvannya ta heoinformatsiynykh system u doslidzhenni hryntovoho pokryvu Polissya Ukrainy: avtoref. dys. na zdobuttya nauk. stupenya kand.s.-h. nauk: spets. 03.00.18 «Hruntoznavstvo» » [The use of multicompetitive space for scanning and geoinformation systems in the exploration of soil coverings of the Polissya of Ukraine: author's abstract. dis for obtaining sciences. Degree Candidate s.-g. Sciences: special 03.00.18 "Soil Science"] Kh., 2006, 24 p.
25. Zanter K. Landsat 8 (L8) data users handbook. Version 2.0. Eros. Sioux Falls, South Dakota, 2016, 98 p.