Absolute sea level changes at the tide gauge station in Władysławowo using different time series software packages

Received: October 01, 2018
1
Department of Air Navigation, Faculty of Navigation, Polish Air Force University
2
Department of Geodesy, Faculty of Civil Engineering, Environmental and Geodetic Science, Koszalin University of Technology

This paper presents geocentric sea level changes at the tide gauge station in Władysławowo, Poland. These changes have been calculated from the time series of GNSS and tide gauge observations. For the estimation of the geocentric sea level trend computer software packages Hector, GITSA, GGMatlab, and Statistica have been used. The results show that all the software packages give a similar value of absolute sea level changes in Władysławowo and it is estimated at a rate of around 3 mm/year. The examined computer programs are featured by a different degree of visualization and the simplicity of use. A significant difficulty is to prepare the required data format and the installation of the computer program in the software environment e.g. Matlab. Finally, it can be concluded that the Hector software package, due to the simplicity of input data preparation, that the possibility of on-line calculations and the selection of different error models are very useful for the analysis of time-series of geophysical phenomena like sea level changes. The least recommended for this type of analysis of time series is the Statistica software package.

  1. Altamimi, Z., P. Sillard, & C. Boucher. (2002). ITRF2000: A new release of the International Terrestrial Reference Frame for earth science applications. J. Geophys. Res., 107(B10), 2214, doi:10.1029/2001JB000561, 2002.
  2. Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19(6), 716–723.
  3. Baarda W. (1968). A testing procedure for use in geodetic networks, Computing Centre of the Delft Geodetic Institute, Netherlands Geodetic Commission, Publications on Geodesy, New Series, 2, 5
  4. Bitharis, S., Ampatzidis, D., Pikridas Ch., Fotiou. A., Rossikopoulos, D., & Schuh. H. (2017). The Role of GNSS Vertical Velocities to Correct Estimates of Sea Level Rise from Tide Gauge Measurements in Greece. Marine Geodesy, 40(5), 297–314, https://doi.org/10.1080/01490419.2017.1322646
  5. Blewitt, G. (2003). Self-consistency in reference frames, geocenter definition, and surface loading of the solid Earth. J. Geophys. Res., 108(B2), 2103, doi:10.1029/2002JB002082,
  6. Blewitt, G., W. C. Hammond, & C. Kreemer (2018). Harnessing the GPS data explosion for interdisciplinary science, Eos, 99, https://doi.org/10.1029/2018EO104623.
  7. Bos, M. S., Fernandes, R. M. S., Williams, S. D. P., & Bastos, L. (2008). Fast error analysis of continuous GPS observations. J. Geodesy, 82 (3), 157–166.
  8. Bos, M. S., Fernandes, R. M. S., Williams, S. D. P., & Bastos, L. (2013). Fast Error Analysis of Continuous GNSS Observations with Missing Data. J. Geod., 87(4):351–360.
  9. Bronsztejn I. N., Siemiendiajew K. A., Musil G., & Muhlig H. (2004). Modern Compendium of Mathematics, in Polish, Wydawnictwo Naukowe PWN
  10. Box, G. E., Jenkins, G. M., Reinsel, G. C., & Ljung, G. M. (2015). Time series analysis: forecasting and control, John Wiley and Sons, 5th edition, ISBN: 978-1-118-67502-1
  11. Cazenave, A., Bonnefond, P., Mercier, F., Dominh, K., & Toumazou, V. (2002): Sea level variations in the Mediterranean Sea and Black Sea from satellite altimetry and tide gauges, Global and Planetary Change, 34(1), 59–86.
  12. Dziadziuszko, Zb., & Jednorał T. (1987). Wahania poziomów morza na polskim wybrzeżu Bałtyku. Dynamika Morza (6), Studia i Materiały Oceanologiczne, 52.
  13. Ekman, M. (1984). Impacts of geodynamic phenomena on systems for height and gravity, Bulletin Géodésique, 63, 281–296
  14. Fu, L. L., & Cazenave, A. (Eds.). (2000). Satellite altimetry and earth sciences: a handbook of techniques and applications (Vol. 69), Elsevier.
  15. Gazeaux, J., Williams, S., King, M., Bos, M., Dach, R., Deo, M., ... & Teferle, F. N.. (2013). Detecting offsets in GPS time series: First results from the detection of offsets in GPS experiment. Journal of Geophysical Research: Solid Earth118(5), 2397–2407.
  16. Grgić, M., Nerem, R. S., Bašić, T. (2017). Absolute Sea Level Surface Modeling for the Mediterranean from Satellite Altimeter and Tide Gauge Measurements, Marine Geodesy, 40(4), 239–258.
  17. Goudarzi M. A., Cocard, M., Santerre, R., Woldai, T. (2013). GPS interactive time series analysis software, GPS Solution (2013) 17:595–603, DOI 10.1007/s10291-012-0296-2
  18. Herring, T. (2003). MATLAB tools for viewing GPS velocities and time series, GPS Solution, January 2003GPS Solutions 7(3):194-199 DOI: 10.1007/s10291-003-0068-0
  19. IPCC. (2014). Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Field, C. B., V. R. Barros, D. J. D]
  20. Kalas, M. (1993). Characteristics of sea level changes on the Polish Coast of the Baltic Sea in the last forty-five years. Proc. of International Workshop, SEA CHANGE’ 93 — Sea Level Changes and their Consequences for Hydrology and Water Management, Nordvvijkerhout, Netherlands, 1, 51–60.
  21. King, R. W. (2002). Documentation for the GAMIT GPS analysis software, MIT Internal Report, 206 p (http://www-gpsg.mit.edu/~simon/gtgk/GAMIT.pdf)
  22. King, R. W, & Herring, T. (2002). Global Kalman filter VLBI and GPS analysis program, MIT Internal Report, 98 p (http://wwwgpsg. mit.edu/simon/gtgk/GLOBK.pdf)
  23. Łyszkowicz, A. (1995). Relative Mean Surface Topography Along the Southern Part of Baltic Sea. Artificial Satellites, Planetary Geodesy, (25), 133–141
  24. Montag, H. (1967). Bestimmung rezenter Niveauverschiebangen aus langjährigen Wasserstandsbeobachtungen der Südlichten OstSeeküste, (Doctoral dissertation, Verlag nicht ermittelbar).
  25. Pajak K., Kowalczyk K. (2018). A comparison of seasonal variations of sea level in the southern Baltic Sea from altimetry and tide gauge data, Advances in Space Research, Available online 7 December 2018, https://doi.org/10.1016/j.asr.2018.11.022
  26. Richter A., Groh A., & Dietrich, R. (2012). Geodetic observations of sea-level change and crustal deformation in the Baltic Sea region, Physics and Chemistry of the Earth, Parts A/B/C, 53, 43–53
  27. Schwarz, G. (1978). Estimating the Dimension of a Model. The Annals of Statistics, 6(2):461–464.
  28. Vermeer, M., Kakkuri, J., Mälkki, P., Boman, H., Kahma, K. K. & Leppäranta, M. (1988). Land uplift and sea level variability spectrum using fully measured monthly means of tide gauge readings.
  29. Wöppelmann, G., Sacher, M., Adam, J., Gurtner, W., Harsson, B. G., Ihde, J., Schlüter, W. (Eds. Ihde J., Sacher M.). (2002). Report on EUVN tide gauge data collection and analysis, European Vertical Reference Network, Sub-Commission for Europe (EUREF).
  30. Wöppelmann G., Marcos, M. (2016). Vertical land motion as a key to understanding sea level change and variability. Reviews of Geophysics, 54.1, 64–92. doi:10.1002/2015RG000502