Investigation of the probability of steel castings shortage at the stage of blanks production

2023;
: pp. 37 - 45
1
Lviv Polytechnic National University
2
Karpenko Physico-Mechanical Institute of the NAS of Ukraine
3
Lviv Polytechnic National University, Ukraine
4
Lviv Polytechnic National University, Ukraine
5
Lviv Polytechnic National University, Ukraine
6
Lviv Polytechnic National University, Ukraine

Problem statement and the research purpose. Now the development of methods of the technological process modeling for production preparation in the life cycle of mechanical engineering products is an actual task. Forecasting the main indicators of reliability and operational characteristics of mechanical engineering products is a priority characteristic of functionally-oriented technologies. In particular, using the mathematical apparatus of Markov chains during the development of technological processes for the production of blanks, it is possible to predict the production of steel blooms without defects and correct the terms of casting processes. Methodology of the study. The experimental results were processed according to the proposed methodology for the blanks production stage. The system of Kolmogorov–Chapman differential equations describes the created reliability flowchart and technological graph of reliability for the stage of procurement production of steel blooms. Results of the investigations. Mathematical and graphical dependencies for forecasting the probability of production without a shortage of steel blooms at a metallurgical enterprise were obtained based on the solution of a system of differential equations. Scientific novelty. The article presents an example of the optimization synthesis of the model of the casting process of steel blooms and the determined time interval with the most likely shortage of blanks. It was established that for the defined production conditions, the probability of failure is realized in a multiple of 4 ($\approx$27 days) relative to the most likely term of repeated shortage over time for steel melting (109 days). Practical value of the results. The proposed technique can be effectively used during the development of technological processes for blanks production of machine parts at the technological preparation stage of production. Scopes of further investigations on the subject of the paper. Further research can be aimed at improving the proposed methodology and extending it to a wider range of materials in the process of castings manufacturing.

  1. Kusyi Ya. Naukovo-prykladni osnovy tekhnolohichnoho uspadkuvannia parametriv yakosti dlia zabezpechennia ekspluatatsiinykh kharakterystyk vyrobiv: dys. … doktora tekhn. nauk: 05.02.08.0020 [Scientific and Applied Basics of the Technological Inheritability of the Quality Parameters for Providing of the Products Operation Characteristics. – On rights of a manuscript. Thesis for doctor degree in technical sciences by speciality 05.02.08 - mechanical engineering.] – Lviv: Lviv Polytechnic Publishing House, 2014. – 383 p. [in Ukrainian]. https://lpnu.ua/sites/default/files/2021/dissertation/16474/dysertdsckus...
  2. Davim J.P. Surface Integrity in Machining. Materials Forming, Machining and Tribology. – Cham, Springer International Publishing AG, 2017 – 82 р. https://doi.org/10.1007/978-3-319-51961-6
  3. Liao Z., la Monaca A., Murray J., Speidel A., Ushmaev D., Clare A., Axinte D., M’Saoubi R. Surface integrity in metal machining - Part I: Fundamentals of surface characteristics and formation mechanisms // International Journal of Machine Tools and Manufacture. – 2021. – Vol. 162. – 103687.https://doi.org/10.1016/j.ijmachtools.2020.103687
  4. la Monaca A., Murray J.W., Liao Z., Speidel A., Robles-Linares J.A., Axinte A., Hardy M.C., Clare A.T. Surface integrity in metal machining - Part II: Functional performance // International Journal of Machine Tools and Manufacture. – 2021. – Vol. 164. –103718. https://doi.org/10.1016/j.ijmachtools.2021.103718
  5. Stupnytskyy V. Features of Functionally-Oriented Engineering Technologies in Concurrent Environment // International Journal of Engineering Research & Technology (IJERT). – 2013. – Vol. 2. – pp. 1181-1186.https://www.ijert.org/research/features-of-the-functionally-oriented-eng... environment-IJERTV2IS90435.pdf
  6. Stupnytskyy V. Computer-aided conception for planning and researching of the functional-oriented manufacturing process // Advanced Manufacturing Processes, part of the Lecture Notes in Mechanical Engineering. – 2020. – pp. 309–320. https://doi.org/10.1007/978-3-030-40724-7_32
  7. Cocca P., Marciano F., Rossi D., Alberti M. Business Software Offer for Industry 4.0: the SAP case // IFAC-PapersOnLine. – 2018. – Vol. 51, no 11. – pp. 1200–1205. https://doi.org/10.1016/j.ifacol.2018.08.427
  8. Klocke F. Manufacturing Processes: Cutting. – Berlin, Springer-Verlag, 2011. – 506р. https://doi.org/10.1007/978-3-642-11979-8
  9. Nyberg P., Frisk E., Nielsen L. Generation of Equivalent Driving Cycles Using Markov Chains and Mean Tractive Force Components // IFAC Proceedings. – 2014. – Vol. 47, no 3. – рр. 8787– 8792. https://doi.org/10.3182/20140824-6-ZA-1003.02239
  10. Gruosso G., Mion A., Gajani G.S. Forecasting of electrical vehicle impact on infrastructure: Markov chains model of charging stations occupation // eTransportation. – 2020. – Vol. 6. – 100083. https://doi.org/10.1016/j.etran.2020.100083
  11. Yakovyna V., Seniv M., Symets I., Sambir N. Algorithms and software suite for reliability assessment of complex technical systems // Radio Electronics, Computer Science, Control. – 2020. – Vol. 4. – pp. 163- 177. https://doi.org/10.15588/1607-3274-2020-4-16
  12. Yakovyna V., Symets I. Reliability assessment of CubeSat nanosatellites flight software by high-order Markov chains // Procedia Computer Science. – 2021. – Vol. 192. – pp. 447- 456. https://doi.org/10.1016/j.procs.2021.08.046
  13. Birolini A. Reliability Engineering: Theory and Practice. – Berlin Heidelberg: Springer-Verlag, 2014. – 626 p. https://doi.org/10.1007/978-3-662-05409-3
  14. Di Bona G., Silvestri A., Forcina A., Petrillo A. Total efficient risk priority number (TERPN): a new method for risk assessment // Journal of Risk Research. – 2018. – Vol. 21, no 2. – pp. 1384-1408.https://doi.org/10.1080/13669877.2017.1307260
  15. Stupnytskyy V., Hrytsay I. Comprehensive analysis of the product’s operational properties formation considering machining technology // Archive of mechanical engineering. – 2020. – Vol. 67, no 2. – pp. 1– 19. https://doi.org/10.24425/ame.2020.131688
  16. Kusyi Ya, Stupnytskyy V, Onysko O, Dragašius E, Baskutis S., Chatys, R. Optimization synthesis of technological parameters during manufacturing of the parts // Eksploatacja i Niezawodnosc – Maintenance and Reliability. – 2022. – Vol. 24, no 4. – pp. 655-667. https://doi.org/10.17531/ein.2022.4.6
  17. Kusyi Y., Kostiuk O., Kuk A., Attanasio A., Cocca P. Optimization of cutting modes during sustainable machining of products based on economic criteria // Lecture Notes in Mechanical Engineering. – 2024. – Р. 167– 181. https://doi.org/10.1007/978-3-031-42778-7_16