Synthesis and Evaluation of Hypoglycemic Activity of New Pyrazolothiazolidine Hybrid Structures

2020;
: pp. 284 - 289
1
Bucovinian State Medical University
2
Bucovinian State Medical University
3
Lviv Polytechnic National University
4
Lviv Polytechnic National University
5
Institute of Organic Chemistry, NAS of Ukrainе

New promising pyrazolothiazolidine hybrid structures, containing a methylenehydrazone linker between functionalized pyrazole and thiazolidine cycles, have been obtained using cyclocondensation of 3-aryl-4-formylpyrazole thiosemicarbazones and diethyl acetylenedicarboxylate in mild reactional conditions. The acetic acid was proposed as a catalytic agent for the synthesis of ambident bi-center thiosemicarbazones as reagents for further formation of the thiazolidine cycle. The obtained pyrazolothiazolidines were found to exhibit hypoglycemic activity by in vivo study of glucose level in the blood of rats after oral administration of synthesized derivatives

  1. Sattar N.: BMC Med., 2019, 17, 46. https://doi.org/10.1186/s12916-019-1281-1
  2. Knowler W., Hamman R., Edelstein S. et al.: Diabetes, 2005, 54, 1150. https://doi.org/10.2337/diabetes.54.4.1150
  3. Guclu M., Gul O., Cander S. et al.: J. Diabetes Res., 2015, 2015. https://doi.org/10.1155/2015/807891
  4. Lincoff A., Wolski K., Nockols S. et al.: Am. J. Med., 2007, 298, 1180. https://doi.org/10.1001/jama.298.10.1180
  5. Kucukguzel S., Senkardes S.: Eur. J. Med. Chem., 2015, 97, 786. https://doi.org/10.1016/j.ejmech.2014.11.059
  6. Dey T., Jacob J., Sahu S., Baidya M.: PharmacologyOnline, 2011, 1, 908.
  7. Hernandez-Vazquez E., Aguayo-Ortiz R., Ramirez-Espinosa J. et al.: Eur. J. Med. Chem., 2013, 69, 10. https://doi.org/10.1016/j.ejmech.2013.07.054
  8. Maccari R., Ottana R., Ciurleo C. et al.: Bioorg. Med. Chem. Lett., 2005, 13, 2809. https://doi.org/10.1016/j.bmc.2005.02.026
  9. Maccari R., Ottana R., Ciurleo R. et al.: Bioorg. Med. Chem. Lett., 2007, 17, 3886. https://doi.org/10.1016/j.bmcl.2007.04.109
  10. Zentgraf M., Steuber H., Koch C. et al.: Angew. Chem. Int. Edit., 2007, 46, 3575. https://doi.org/10.1002/anie.200603625
  11. Vovk M., Yarosh O., Denysenko O. et al.: UA Pat. 92647, Publ. Aug. 26, 2014.
  12. Tietze L., Bell H., Chandrasekhar S.: Angew. Chem. Int. Edit., 2003, 42, 3996. https://doi.org/10.1002/anie.200200553
  13. Mishra S., Singh P.: Eur. J. Med. Chem., 2016, 124, 500. https://doi.org/10.1016/j.ejmech.2016.08.039
  14. Vovk M., Bratenko M., Chornous V.: 4-Funksionalnozamishcheni Pirazoly. Prut, Chernivtsi 2008.
  15. Chaban T., Klenina O., Drapak I. et al.: Chem. Chem. Technol., 2014, 8, 287. https://doi.org/10.23939/chcht08.03.287
  16. Baranovskyi V., Symchak R., Pokryshko O. et al.: Chem. Chem. Technol., 2018, 12, 447. https://doi.org/10.23939/chcht12.04.447
  17. Bratenko M., Barus M., Denysenko O. et al.: Zh. Org. Pharm. Khim., 2015, 13, 37.
  18. Montsevichyute-Eringene E.: Patol. Phiziol., 1964, 71.
  19. Bratenko M., Chernyuk I., Vovk M.: Zh. Org. Khim., 1997, 33, 1368.
  20. Berman H., Westbrook J., Feng Z. et al.: Nucl. Acids Res., 2000, 28, 235. https://doi.org/10.1093/nar/28.1.235
  21. Ramadan S., Sallam H.: J. Het. Chem., 2018, 55, 1942. https://doi.org/10.1002/jhet.3232
  22. Singla R., Gautam D., Gautam P., Chaudhary R.: Phoshorus Sulfur, 2016, 191, 740. https://doi.org/10.1080/104265507.2015.1073282
  23. Hassan A., Mohamed S., Mohamed V. et al.: J. Chem. Res., 2014, 38, 673. https://doi.org/10.3184%2F174751914X14138794305033
  24. Hassan A., Ibrahim Y., Aly A. et al.: J. Het. Chem., 2013, 50, 473. https://doi.org/10.1002/jhet.712
  25. Benmohammed A., Khoumeri O., Djafri A. et al. : Molecules, 2014, 19, 3068. https://doi.org/10.3390/molecules