Catalytic Synthesis of Methyl Glycolate from Glyoxal Methanol Solution over Base Catalysts

2022;
: pp. 515 - 520
1
Institute for Sorption and Problems of Endoecology of the National Academy of Sciences of Ukraine
2
Institute for Sorption and Problems of Endoecology of the National Academy of Sciences of Ukraine
3
Institute for Sorption and Problems of Endoecology of the National Academy of Sciences of Ukraine

The process of obtaining methyl glycolate from a methanolic solution of glyoxal over solid basic catalysts based on mixed oxides of magnesium, zirconium, and aluminum has been studied. According to obtained results, the selectivity of the methyl glycolate formation increases with increasing the basicity of the catalyst. The most selective coprecipitated MgO-ZrO2 provides almost 100 % methyl glycolate yield. The supported MgO-ZrO2/Al2O3 gives to 95 % yield of methyl glycolate with the formation of the glyoxal dimethyl acetal as a by-product. This catalyst could be reused several consecutive cycles without the need for intermediate regeneration. Methyl glycolate in a high 93 % yield can be obtained at 453 K over this solid catalyst in flow mode, which may be of practical interest.

[1] Xu, Y.; Meh, A.; Yang, G.; Zhao, Y.; Chen, Q.; Li, Z.; Ma, X. Homogeneous Catalytic Kinetics of Methyl Glycolate Hydrolysis. Chem. Eng. Technol. 2016, 39 (5), 918-926. https://doi.org/10.1002/ceat.201500649
[2] Cotellessa, C.; Peris, K.; Chimenti, S. Glycolic Acid and Its Use in Dermatology. J. Eur. Acad. Dermatol. Venereol. 1995, 5 (3), 215-217. https://doi.org/10.1111/j.1468-3083.1995.tb00107.x
[3] Tang, Sh.-Ch.; Yang, J.-H. Dual Effects of Alpha-Hydroxy Acids on the Skin. Molecules 2018, 23 (4), 863. https://doi.org/10.3390/molecules23040863
[4] De Clercq, R.; Makshina, E.; Sels, B.F.; Dusselier, M. Catalytic Gas-Phase Cyclization of Glycolate Esters: A Novel Route Toward Glycolide-Based Bioplastics. ChemCatChem 2018, 10 (24), 5649-5655. https://doi.org/10.1002/cctc.201801469
[5] Nair, L.S.; Laurencin, C.T. Biodegradable Polymers as Biomaterials. Prog. Polym. Sci. 2007, 32 (8-9), 762-798. https://doi.org/10.1016/j.progpolymsci.2007.05.017
[6] Yamane, K.; Sato, H.; Ichikawa, Y.; Sunagawa, K.; Shigaki, Y. Development of an Industrial Production Technology for High-Molecular-Weight Polyglycolic Acid. Polym. J. 2014, 46, 769-775. https://doi.org/10.1038/pj.2014.69
[7] Ginjupalli, K.; Shavi, G.V.; Averineni, R.K.; Bhat, M.; Udupa, N.; Nagaraja Upadhya, P. Poly(α-hydroxy acid) Based Polymers: A Review on Material and Degradation Aspects. Polym. Degrad. Stab. 2017, 144, 520-535. https://doi.org/10.1016/j.polymdegradstab.2017.08.024
[8] Gädda, T.M.; Pirttimaa, M.M.; Koivistoinen, O.M.; Richard, P.; Penttilä, M.; Harlin, A. The Industrial Potential of Bio-Based Glycolic Acid and Polyglycolic Acid. Appita J. 2014, 67, 12. https://www.researchgate.net/publication/286496676
[9] Jem, K.J.; Tan, B. The Development and Challenges of Poly (lactic acid) and Poly (glycolic acid). Adv. Ind. Eng. Polym. Res. 2020, 3 (2), 60-70. https://doi.org/10.1016/j.aiepr.2020.01.002
[10] Yang, Sh.-B.; Chien, I.-L. Rigorous Design and Optimization of Methyl Glycolate Production Process through Reactive Distillation Combined with a Middle Dividing-Wall Column. Ind. Eng. Chem. Res. 2019, 58 (13), 5215-5227. https://doi.org/10.1021/acs.iecr.8b05665
[11] Sun, Y.; Wang, H.; Shen, J.; Liu, H.; Liu, Z. Highly Effective Synthesis of Methyl Glycolate with Heteropolyacids as Catalysts. Catal. Commun. 2009, 10 (5), 678-681. https://doi.org/10.1016/j.catcom.2008.11.015
[12] Wang, B.; Xu, Q.; Song, H.; Xu, G. Synthesis of Methyl Glycolate by Hydrogenation of Dimethyl Oxalate over Cu-Ag/SiO2 Catalyst. J. Nat. Gas Chem. 2007, 16 (1), 78-80. https://doi.org/10.1016/S1003-9953(07)60030-9
[13] Yin, A.; Wen, C.; Dai, W.-L.; Fan, K. Ag/MCM-41 as a Highly Efficient Mesostructured Catalyst for the Chemoselective Synthesis of Methyl Glycolate and Ethylene Glycol. Appl. Catal. B 2011, 108-109, 90-99. https://doi.org/10.1016/j.apcatb.2011.08.013
[14] Ye, R.-P.; Lin, L.; Wang, L.-C.; Ding, D.; Zhou, Z.; Pan, P.; Xu, Z.; Liu, J.; Adidharma, H.; Radosz, M. Perspectives on the Active Sites and Catalyst Design for the Hydrogenation of Dimethyl Oxalate. ACS Catal. 2020, 10 (8), 4465-4490. https://doi.org/10.1021/acscatal.9b05477
[15] Hayashi, T.; Inagaki, T.; Itayama, N.; Baba, H. Selective Oxidation of Alcohol over Supported Gold Catalysts: Methyl Glycolate Formation from Ethylene Glycol and Methanol. Catal. Today 2006, 117 (1-3), 210-213. https://doi.org/10.1016/j.cattod.2006.06.045
[16] Ke, Y.-H.; Qin, X.-X.; Liu, C.-L.; Yang, R.-Z.; Dong, W.-S. Oxidative Esterification of Ethylene Glycol in Methanol to Form Methyl Glycolate over Supported Au Catalysts. Catal. Sci. Technol. 2014, 4, 3141-3150. https://doi.org/10.1039/C4CY00556B
[17] Mattioda, G., Blanc, A. Glyoxal. In Ullmann’s encyclopedia of industrial chemistry; Vol 17; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, 2012; pp 83-87.
[18] Balat, M.; Balat, M.; Kirtay, E.; Balat, H. Main Routes for the Thermo-Conversion of Biomass into Fuels and Chemicals. Part 1: Pyrolysis Systems. Energy Convers. Manag. 2009, 50 (12), 3147-3157. https://doi.org/10.1016/j.enconman.2009.08.014
[19] Kiyoura, T.; Kogure, Y. Synthesis of Hydroxyacetic Acid and its Esters from Glyoxal Catalyzed by Multivalent Metal Ions. Appl. Catal. A-Gen. 1997, 156 (1), 97-104. https://doi.org/10.1016/S0926-860X(96)00414-0
[20] Dapsens, P.Y.; Mondelli, C.; Kusema, B.T., Verel, R.; Pérez-Ramírez, J. A Continuous Process for Glyoxal Valorisation Using Tailored Lewis-Acid Zeolite Catalysts. Green Chem. 2014, 16, 1176-1186. https://doi.org/10.1039/C3GC42353K
[21] Levytska, S.; Mylin, A. Catalytic Synthesis of Glycolic Acid and its Methyl Ester from Glyoxal. Ukr. Chem. J. 2020, 86 (12), 134-145. https://doi.org/10.33609/2708-129X.86.12.2020.134-145
[22] Tanabe, K. Solid Acid and Bases. Their Catalytic Properties; Academic Press: New York–London, 1970.
[23] Nenitescu, C.D. Organicheskaya khimiya; vol. I; Inostr. Lit.: Moskow, 1963.