Determination of the Rate Constant of Microorganisms Destruction after Ultrasound Water Treatment and Different Gases Action

2022;
: pp. 652 - 659
Authors:
1
Lviv Polytechnic National University

The change of microorganisms number (rod-like spore-containing Bacillus cereus bacteria type) for the range of 102 ÷ 106 CFU in 1 cm3 from the duration of simultaneous action of ultrasound (US) cavitation and the nature of different gas (carbon dioxide, oxygen, argon) is presented. The graphical dependences of the effective rate constant values of microorganisms destruction (kd) on its initial number per unit volume of water at different modes of its treatment are shown. The destruction degrees of bacterial cells in the process of water purification are calculated. It was investigated that the value of kd does not depend on the initial number of cells in water, but depends on the nature of the bubbled gas through the reaction aqueous medium: kd(Ar/US) > kd(O2/US) > kd(CO2/US).

[1] Romenskiy, A.V.; Kazakov, V.V.; Grin, G.I. Ultrazvuk v geterogennom katalize; Severodonetskaya gorodskaya tipografiya: Severodonetsk, 2006.
[2] Naidji, B.; Hallez, L.; Taouil, A. E.; Rebetez, M.; Hihn, J-Y. Influence of Pressure on Ultrasonic Cavitation Activity in Room Temperature Ionic Liquids: An Electrochemical Study. Ultrason. Sonochem. 2019, 54, 129-134. https://doi.org/10.1016/j.ultsonch.2019.02.007
[3] Yamashita, T.; Ando, K. Low-intensity Ultrasound Induced Cavitation and Streaming in Oxygen-Supersaturated Water: Role of Cavitation Bubbles as Physical Cleaning Agents. Ultrason. Sonochem. 2019, 52, 268-279. https://doi.org/10.1016/j.ultsonch.2018.11.025
[4] Shevchuk, L.; Strogan, O.; Koval, I. Equipment for Magnetic-Cavity Water Disinfection. Chem. Chem. Technol. 2012, 6, 219-223. https://doi.org/10.23939/chcht06.02.219
[5] Kondratovych, O.; Koval, I.; Kyslenko, V.; Shevchuk, L.; Predzumirska, L.; Maksymiv, N. Whey Disinfection and its Properties Changed under Ultrasonic Treatment. Chem. Chem. Technol. 2013, 7, 185-190. https://doi.org/10.23939/chcht07.02.185
[6] Li, B.; Gu, Y.; Chen, M. An Experimental Study on the Cavitation of Water with Dissolved Gases. Exp. Fluids. 2017, 58, 164. https://doi.org/10.1007/s00348-017-2449-0
[7] Koval, I. Synergistic Effect of Ultrasound Cavitation and Gas in the Water Disinfection. Chem. Chem. Technol. 2021, 15, 575-582. https://doi.org/10.23939/chcht15.04.575
[8] Koval, I. Correlation between Diameter of Microorganisms and Efficiency of Microorganisms Destruction under Gas/Cavitation Conditions. Chem. Chem. Technol. 2021, 15, 98-104. https://doi.org/10.23939/chcht15.01.098
[9] Koval, I.; Starchevskyy, V. Gas Nature Effect on the Destruction of Various Microorganisms under Cavitation Action. Chem. Chem. Technol. 2020, 14, 264-270. https://doi.org/10.23939/chcht14.02.264
[10] Koval, I.Z.; Kіslenko, V.N.; Starchevskii, V.L.; Shevchuk, L.I. The Effect of Carbon Dioxide on the Viability of Bacteria of Bacillus and Diplococcus Genera. J. Water Chem. Technol. 2012, 34, 112-116. https://doi.org/10.3103/S1063455X12020075
[11] Dai, C.; Xiong, F.; He, R.; Zhang, W., Ma, Н. Effects of Low-Intensity Ultrasound on the Growth, Cell Membrane Permeability and Ethanol Tolerance of Saccharomyces cerevisiae. Ultrason. Sonochem. 2017, 36, 191-197. https://doi.org/10.1016/j.ultsonch.2016.11.035
[12] Tsukamoto, I.; Yim, B.; Stavarache, C.E.; Furuta, M.; Hashiba, K.; Maeda, Y. Inactivation of Saccharomyces cerevisiae by Ultrasonic Irradiation. Ultrason. Sonochem. 2004, 11, 61-65. https://doi.org/10.1016/S1350-4177(03)00135-4
[13] Slyusarenko, T.P. Laboratornyy praktikum po mikrobiologii pishchevykh proizvodstv; M.: Legkaya i pishchevaya promyshlennost, 1984.
[14] Koval, I.; Shevchuk, L.; Starchevskyy, V. Ultrasonic Intensification of the Natural Water and Sewage Disinfection. Chem. Eng. Trans. 2011, 24, 1315-1320. https://doi.org/10.3303/CET1124220
[15] Radi, R. Oxygen Radicals, Nitric Oxide, and Peroxynitrite: Redox Pathways in Molecular Medicine. Proc. Natl. Acad. Sci. U.S.A. 2018, 115, 5839-5848. https://doi.org/10.1073/pnas.1804932115
[16] Wang, F.; Lu, S.; Ji, M. Components of Released Liquid from Ultrasonic Waste Activated Sludge Disintegration. Ultrason. Sonochem. 2006, 13, 334-338. https://doi.org/10.1016/j.ultsonch.2005.04.008
[17] Tiehm, A.; Nickel, K.; Zellhorn, M.; Neis, U. Ultrasonic Waste Activated Sludge Disintegration for Improving Anaerobic Stabilization. Water Res. 2001, 35, 2003-2009. https://doi.org/10.1016/S0043-1354(00)00468-1