Prediction of the Strength of Oakwood Adhesive Joints Bonded with Thermoplastic Polyvinyl Acetate Adhesives

2023;
: pp. 110 - 117
1
Lviv Ukrainian National Forestry University
2
Lviv Polytechnic National University
3
Lviv Polytechnic National University, Ukraine
4
Lviv Ukrainian National Forestry University
5
Lviv Ukrainian National Forestry University

Among the several kinds of thermoplastic adhesives, structured and non-structured polyvinyl acetate (PVA) adhesives have a rather wide application and are used currently for forming adhesive joints from different wood species, especially oakwood. To ensure proper conditions of oakwood adhesive joints use, it is important to have fast and accurate methods of predicting their strength and durability. The strength changes of the oakwood adhesive joints bonded with structured and non-structured PVA adhesives have been investigated by conducting long-term experiments. Based on the generalization of experimental data and theoretical predictions regarding the mechanism of the adhesive seam formation, equations that allow calculating theoretically the strength of oakwood adhesive joints bonded with non-structured and structured PVA adhesives have been proposed. The pro-posed equations reproduce experimental data with suffi-cient accuracy of ±3.5 % within the temperature range from 251 K to 306 K and humidity range from 40 % to 100 %, and therefore, are recommended for practical use.

  1. Pizzi, A.; Papadopoulos, A.N.; Policardi, F. Wood Composites and Their Polymer Binders. Polymers 2020, 12, 1115. https://doi.org/10.3390/polym12051115
  2. Jin, Y.; Cheng, X.; Zheng, Z. Preparation and Characterization of Phenol-Formaldehyde Adhesives Modified with Enzymatic Hydrolysis Lignin. Bioresour. Technol. 2010, 101, 2046-2048. https://doi.org/10.1016/j.biortech.2009.09.085
  3. Qiao, W.; Li, S.; Xu, F. Preparation and Characterization of a Phenol-Formaldehyde Resin Adhesive Obtained from Bio-Ethanol Production Residue. Polym. Polym. Compos. 2016, 24, 99-105. https://doi.org/10.1177/096739111602400203
  4. Łebkowska, M.; Załęska-Radziwiłł, M.; Tabernacka, A. Adhesives Based on Formaldehyde-Environmental Problems. Biotechnologia 2017, 98, 53-65. https://doi.org/10.5114/bta.2017.66617
  5. Bekhta, P.; Müller, M.; Hunko, І. Properties of Thermoplastic-Bonded Plywood: Effects of the Wood Species and Types of the Thermoplastic Films. Polymers 2020, 12, 2582. https://doi.org/10.3390/polym12112582
  6. Kaboorani, A.; Riedl, B. Improving Performance of Polyvinyl Acetate (PVA) as a Binder for Wood by Combination with Melamine Based Adhesives. Int. J. Adhes. Adhes. 2011, 31, 605-611. https://doi.org/10.1016/j.ijadhadh.2011.06.007
  7. Khan, U.; May, P.; Porwal, H.; Nawaz, K.; Coleman, J.N. Improved Adhesive Strength and Toughness of Polyvinyl Acetate Glue on Addition of Small Quantities of Graphene. ACS Appl. Mater. Interfaces 2013, 5, 1423-1428. https://doi.org/10.1021/am302864f
  8. Qiao, L.; Easteal, A.J. Aspects of the Performance of PVAc Adhesives in Wood Joins. Pigment. Resin Technol. 2001, 30, 79-87. https://doi.org/10.1108/03699420110381599
  9. Minelga, D.; Ukvalbergiené, K.; Norvydas, V.; Buika, G.; Dubininkas, M. Impact of Aliphatic Isocyanates to PVA Dispersion Gluing Properties. Medziagotyra 2010, 16, 217-220.
  10. Fang, Q.; Cui, H.-W.; Du, G.-B. Preparation and Characterisa-tion of PVAc-NMA-MMT. J. Thermoplast. Compos. Mater. 2013, 26, 1393-1406. https://doi.org/10.1177/0892705712461644
  11. Manchenko, O.; Nizhnik, V. Role of the Structure and Composition of Macromolecule Chain in Chemical Plasticization of Polymers. Chem. Chem. Technol. 2014, 8, 323-327. https://doi.org/10.23939/chcht08.03.323
  12. Tigabe, S.; Atalie, D.; Gideon, R.K. Physical Properties Characterization of Polyvinyl Acetate Composite Reinforced with Jute Fibers Filled with Rice Husk and Sawdust. J. Nat. Fibers 2022, 19, 5928-5939. https://doi.org/10.1080/15440478.2021.1902899
  13. Custodio, J.; Broughton, J.; Cruz, H. A Review of Factors Influencing the Durability of Structural Bonded Timber Joints. Int. J. Adhes. Adhes. 2009, 29, 173-185. https://doi.org/10.1016/j.ijadhadh.2008.03.002
  14. Follrich, J.; Teischinger, A.; Gindl, W.; Müller, U. Tensile Strength of Softwood Butt end Joints. Effect of Grain Angle on Adhesive Bond Strength. Wood Mater. Sci. Eng. 2007, 2, 83-89. https://doi.org/10.1080/17480270701841043
  15. Li, R.; Guo, X.; Ekevad, M.; Marklund, B.; Cao, P. Investigation of Glueline Shear Strength of Pine Wood Bonded with PVAc by Response Surface Methodology. BioResources 2015, 10, 3831-3838. https://doi.org/10.15376/biores.10.3.3831-3838
  16. Hosovskyi, R., Kindzera, D., Atamanyuk, V. Diffusive Mass Transfer during Drying of Grinded Sunflower Stalks. Chem. Chem. Technol. 2016, 10, 459-463. https://doi.org/10.23939/chcht10.04.459
  17. Kshyvetskyy, B. Prohnozuvannya Dovhovichnosti Termoplas-tychnykh Kleyovykh Z'yednanʹ Derevyny za Dopomohoyu Ma-tematychnoyi Modeli. Problemy trybolohiyi 2012, 66, 38-42. http://tribology.khnu.km.ua/index.php/ProbTrib/article/view/266