Design, Synthesis and Biological Activity of the 4-Thioquinoline Derivative

2023;
: pp. 774 - 785
1
Zaporizhzhia National University, Faculty of Biology
2
Zaporizhzhia National University, Faculty of Biology
3
Khortytsia National Academ
4
Zaporizhzhia National University, Faculty of Biology; Institute of Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf
5
Vasyl Stefanyk Precarpathian National University
6
Department of Chemistry, PGP College of Arts and Science Paramathi, Namakkal
7
Zaporizhzhia National University, Faculty of Biology
8
Zaporizhzhia National University, Faculty of Biology

One of the promising areas in the creation of bioregulators is the modeling of compounds that combine several pharmacophores. The design of new highly efficient and low-toxic cytoprotectors is largely based on the derivatives of nitrogen-containing heterocycles, and quinoline plays a significant role among these compounds. The researchers evaluated the toxicity of the tested compounds in silico, in vitro, and in vivo, which allowed determiningseveral factors that affect the level of toxic action of 4-thioquinoline derivatives and the direction of non-toxic substances in this sequence. The studied 4-thioquinolines showed a moderate antiradical action in the experiment, inferior to the reference antioxidant Acetylcysteine. The most active compounds are 7-chloro-4-thioquinoline derivatives with propanoic acid residues in the 4th position. 2-(7-chloroquinolin-4-ylthio)propanoic acid and sodium salt of 2-amino-3-((7-chloroquinolin-4-yl)thio)propanoic acid showed the most promising results and their antioxidant action was higher than Tiotriazolin (the comparator) by 27 % and 41 %, respectively. The studied compounds showed a protective effect under H2O2-induced oxidative stress against male sperm according to the main indicators of sperm fertility. It was found that the compounds withresidues of succinic acid, cysteamine, or cysteine in the molecule structure are not inferior to reference drugs. On average, 2-((7-chloroquinolin-4-yl)thio)succinic acid and 2-((quinolin-4-yl)thio)ethanaminedihydrochloride exceeded the comparison drug Acetylcysteine and were on a par with the effect of Ascorbic acid.

  1. Saklayen, M.G. The Global Epidemic of the Metabolic Syndrome. Curr. Hypertens. Rep. 2018,20, 12. https://doi.org/10.1007/s11906-018-0812-z
  2. Martins, A.D.; Majzoub, A.; Agawal, A. Metabolic Syndrome and Male Fertility. World J. Men's Health2019, 37, 113–127. https://doi.org/10.5534/wjmh.180055
  3. Barati, E.; Nikzad, H.; Karimian, M. Oxidative Stress and Male Infertility: Current Knowledge of Pathophysiology and Role of Antioxidant Therapy in Disease Management. Cell. Mol. Life Sci.2020, 77, 93–113. https://doi.org/10.1007/s00018-019-03253-8
  4. Sanocka, D.; Kurpisz, M. Reactive Oxygen Species and Sperm Cells. Reprod. Biol. Endocrinol.2004, 2, 12. https://doi.org/10.1186/1477-7827-2-12
  5. Ursini, F. Oxygen, Sulfur, Selenium, Iron and Lipid Peroxidation: How GPx4 Controls Cell Life and Death. Free Radic. Biol. Med. 2019, 139, S3–S3.
  6. Yadav, V.; Reang, J.; Sharma, V.; Majeed, J.; Sharma, P. C.; Sharma, K.; Giri, N.; Kumar, A.; Tonk, R. K. Quinoline-Derivatives as Privileged Scaffolds for Medicinal and Pharmaceutical Chemists: A Comprehensive Review. Chem. Biol. Drug Design 2022, 100, 389–418. https://doi.org/10.1111/cbdd.14099
  7. Brazhko, O.A.; Omelyanchik, L.O.; Zavgorodniy, M.P.; Martynovsky, M.P. Khimiya ta biolohichnaaktyvnistʹ 2(4)-tiokhinolinivi 9-tioakrydyniv;ZNU:Zaporizhzhia, 2013.
  8. Zeleke, D.; Eswaramoorthy, R.; Belay, Z.; Melaku, Y. Synthesis and Antibacterial, Antioxidant, and Molecular Docking Analysis of Some Novel Quinoline Derivatives. J Chem2020,2020, 1324096.https://doi.org/10.1155/2020/1324096
  9. Ali, M.M.A.; Suriyan, G.U.; Surya, K.J.; Mani, K.S. Synthesis of Bioactive Quinoline Appended Spiro Pyrrolidinesas Antioxidants. J. Heterocycl. Chem. 2023, 60,1558–1564.https://doi.org/10.1002/jhet.4699
  10. Haeusler, I.L.; Chan, X.H.S; Guerin, P.J. The Arrhythmogenic Cardiotoxicity of the Quinoline and Structurally Related Antimalarial Drugs: A Systematic Review. BMC Med.2018, 16, 200. https://doi.org/10.1186/s12916-018-1188-2
  11. Kang, S.K.; Woo, J.; Cho, S.; Lee, S,E.; Kim, Y.K.; Yoon, S.S. Synthesis of Benzo[g]quinoline Derivatives and Their Electroluminescent Properties. J. Nanosci. Nanotechnol.2019,19, 4543–4548. https://doi.org/10.1166/jnn.2019.16687
  12. Hu, Y.Q.; Gao, C.; Zhang, S. Quinoline Hybrids and Their Antiplasmodial and Antimalarial Activities. Eur. J. Med. Chem. 2017, 139, 22–47. https://doi.org/10.1016/j.ejmech.2017.07.061
  13. Brazhko, O.; Gencheva V.; Kornet M.; Zavgorodniy, M. Modern Aspects of Creating of Drugs Based QuS-Program Development;LAP LAMBERT Academic Publishing, 2020.
  14. Kornet, M.M.; Brazhko, О.А., Zavhorodniy M.P.; Tkach, V.V.; Kruglyak, O.S.; de Oliveira, S.C. Electrochemical Determination of Antioxidant Activity of New 4-Thiosubstituted Quinoline Derivatives with Potential Radioprotecting Properties. Biointerface Res. Appl. Chem.2021,11, 9148–9156. https://doi.org/10.33263/BRIAC112.91489156
  15. Bogdan, A.M.; Brazhko, S.; Labenska, I.B.; Brazhko, O.A. Acute Toxicity and Hypoglycemic Activity of 7-Chloro-4-thio-substituted Quinoline. Bulletin of Zaporizhzhia National University. Biological Sciences2019, 1, 23–30. https://doi.org/10.26661/2410-0943-2019-1-03
  16. Brazhko, O.O.; Zavgorodny, M.P.; Kruglyak, O.S.; Omeljanchik, L.O.; Shapoval, G.A.Antioxidant Activity of Alkoxy Derivatives of (Quinoline-4-ylthio)carboxylic Acids. UkrBiochem J2015, 87, 95–102.https://doi.org/10.15407/ubj87.02.095
  17. Yang, R.; Ma, Y.; Huang, T.; Xie, W.; Zhang, X.; Huang, G.; Liu, X. Synthesis and Antifungal Activities of 4-Thioquinoline Compounds. Chinese J Org Chem2018, 38, 2143–2150. https://doi.org/10.6023/cjoc201801024
  18. Chen, J.; Lu, J.; Xie, F.; Huang, L. QuinolineMercaptoacetate Sulfonamide Derivative, Intermediate, Pharmaceutical Derivative or Formulation, and Preparation Method and Use Therefor. WO2022242782 A1, November 24, 2022.
  19. Metelytsia, L.; Hodyna, D.; Dobrodub, I.; Semenyuta, I.; Zavhorodnii, M.; Blagodatny, V.; Brazhko, O.; Design of (Quinolin-4-ylthio)carboxylic Acids as New Escherichia coli DNA Gyrase B Inhibitors: Machine Learning Studies, Molecular Docking, Synthesis and Biological Testing. ComputBiolChem2020, 85, 107224. https://doi.org/10.1016/j.compbiolchem.2020.107224
  20. Lagunin, A.; Zakharov, A.; Filimonov, D. QSAR Modelling of Rat Acute Toxicity on the Basis of PASS Prediction. Mol. Inform. 2011, 30, 241–250. https://doi.org/10.1002/minf.201000151
  21. Brazhko, O.A.; Zavgorodniy, M.P.; Kornet, M.M.; Lagron, A.V.; Dobrodub, I.V. Synthesis and Biological Activity of Derivatives (2-Methyl(phenyl)-6-R-quinolin-4-yl-sulphanyl)carboxylic Acid. Sci. Rev.[Online] 2018, 7, 8–10. (accessed Nov 10, 2022).
  22. Brazhko, O.A.; Zavgorodniy, M.P.; Dobrodub, I.V.; Omelyanchik, L.O.; Gencheva, V.I.; Novosad, N.V.; Brazhko, O.O. SposibOtrymannya A(Heteryl-(Tio))-BurshtynovoyiKysloty. Pat. Ukraine 60110, June 10, 2011.
  23. Brazhko, O.A.; Kornet, M.M.; Zavgorodniy, M.P. S-(Azaheteryl)tsysteaminy ta Yikh Soli. Pat. Ukraine 97937, March 26, 2012.
  24. Toxicity Estimation Software Tool (TEST).Washington: U.S. Environmental Protection Agency.https://www.epa.gov/chemical-research/toxicity-estimation-software-tool-... (accessed 2022-10-21).
  25. Web service for predicting acute toxicity of compounds to mammals. https://www.epa.gov/chemical-research/toxicity-estimation-software-tool-... (accessed 2023-04-20).
  26. Reznikov, O.G. Zahalʹni etychni pryntsypy eksperymentiv na tvarynakh. Pershyynatsionalʹnyykonhres z bioetyky. Endocrinology2003,8, 142–145.
  27. Stefanov, O.V. Doklinichnidoslidzhennyalikarsʹkykhzasobiv (metodychnirekomendatsiyi);Avitsena:Kyiv, 2001.
  28. Gubskiy, Yu.I.;Dunayev, V.V.; Bulenichev, I.F. Metodyotsinkyantyoksydantnykhvlastyvosteyfiziolohichnoaktyvnykhspoluk pry initsiatsiyivilʹnoradykalʹnykhprotsesiv in vitro (metodychnirekomendatsiyi); Kiev, 2002.
  29. PASS. http://www.ibmh.msk.su/PASS(accessed 2023-04-17).
  30. Filimonov, D.A.; Lagunin, A.A.; Gloriozova, T.A.; Rudik, A.V.; Druzhilovskii, D.S.; Pogodin, P.V.; Poroikov, V.V. Prediction of the Biological Activity Spectra of Organic Compounds Using the Pass Online Web Resource. Chem.Heterocycl. Compd. 2014, 50, 444–457. https://doi.org/10.1007/s10593-014-1496-1
  31. European Convention for the Protection of Vertebrate Animals Used for Experimental and Other Scientific Purposes. Strasbourg: Council of Europe, 1986. http://www.arsal.ro/wp-content/uploads/2017/02/ETS-123-1.pdf(accessed 2023-01-11).
  32. Rudik, A.; Dmitriev, A.; Lagunin, A.; Filimonov, D.; Poroikov, V. MetaPASS: A Web Application for Analyzing the Biological Activity Spectrum of Organic Compounds Taking into Account Their Biotransformation. Mol. Inform. 2021, 40, 2000231. https://doi.org/10.1002/minf.202000231