Optical study and simulation of diffusion of copper ions in the linbo3 crystal

2022;
: pp. 40-45
1
Lviv Polytechnic National University, Scientific Research Company 'Electron-Carat'
2
Lviv Polytechnic National University
3
Lviv Polytechnic National University
4
Scientific Research Company 'Electron-Carat'
5
Lviv Polytechnic National University, Institute for Energy Research and Physical Technologies

The article deals with research into the processes of diffusion and drift of copper ions in a lithium niobate crystal after annealing in the presence of a copper film deposited on the crystal surface. For this purpose, there are chosen temperatures T = 600, 650, 700, 750 and 800°C, with the duration of high-temperature annealing being 6 hours for each sample. The optical absorption spectra of the samples are recorded in the direction perpendicular to the direction of diffusion at different distances from the edge of the crystal. Absorption bands of Cu+ (400 nm) and Cu2+ (1000 nm) ions are observed in all the samples annealed. The intensity of the bands varies depending on the annealing temperature and the distance from the diffusion source. Concentrations of copper ions are calculated using the Smakula–Dexter formula. Depth dependences of the Cu ions concentration are approximated within the framework of the model, taking into account both diffusion and drift of Cu ions. Experimental spatial distributions of copper ion concentrations are well approximated by theoretical curves calculated within the framework of the mathematical model of diffusion. The diffusion coefficients determined from the approximations are well-agreed with the available data from the literature.

  1. Ed. K.K. Wong, Properties of lithium niobate, London: INSPEC, p. 423, 2002.
  2. V.Sh. Ivanov, V.A. Ganshin, and Yu.N. Korkishko, “Analysis of ion exchanged Me:LiNbO3 and Cu:LiTaO3 waveguides by AES, SAM, EPR and optical methods”, Vacuum, vol. 43, pp. 317-324, 1992. https://doi.org/10.1016/0042-207X(92)90164-R
  3.  F. Caccavale , C. Sada ,  F. Segato et al., “Copper-lithium ion exchange in LiNbO3”, In: J. Mater. Res., vol. 15, pp. 1120–1124, 2000. https://doi.org/10.1557/JMR.2000.0159
  4. S. Kar and K. Bartwal, “Cu2+ ion in-diffusion in congruent LiNbO3 single crystals”, In: Mater. Lett., vol. 62, pp. 3934–3936, 2008. https://doi.org/10.1016/j.matlet.2008.05.031
  5. K. Peithmann, J. Hukriede, K. Buse, and E. Krätzig, “Photorefractive properties of LiNbO3 crystals doped by copper diffusion”, In Physical Review B., vol. 61, pp. 4615-4620, 2000. https://doi.org/10.1103/PhysRevB.61.4615
  6. D.Yu. Sugak, I.I. Syvorotka, U.V. Yakhnevych et al., “Optical Investigation of the Cu Ions Diffusion into Bulk Lithium Niobate”, Acta Physica Polonica A., vol. 133, 2018. in press https://doi.org/10.12693/APhysPolA.133.965
  7. I. Solskii, D. Sugak, and M. Vakiv, “Growing large size complex oxide single crystals by Czochralski technique for electronic devices”, Acta Physica Polonica A., vol. 124, no. 2, 2013. https://doi.org/10.12693/APhysPolA.124.314
  8. D.Yu. Sugak, “Coloring changes of congruent LiNbO3 crystals under redox annealing”, Solid State Phenomena, vol. 230, pp. 228-232, 2015. https://doi.org/10.4028/www.scientific.net/SSP.230.228
  9.  D. Sugak, I. Syvorotka, O. Buryy et al., “Spatial distribution of LiNbO3 single crystals optical properties changes after redox high-temperature treatment”, IOP Conf. Series: Materials Science and Engineering, vol.169, pp. 012019 -012026, 2017. https://doi.org/10.1088/1757-899X/169/1/012019
  10.  D. Sugak, I. Syvorotka, O. Buryy et al., “Spatial distribution of optical coloration in single crystalline LiNbO3 after high-temperature H2/air treatments”, Optical Materials, vol. 70, pp. 106-115, 2017. https://doi.org/10.1016/j.optmat.2017.05.022
  11. T. Kobayashi, K. Muto, J. Kai, and A. Kawamori, “EPR and optical studies of LiNbO3 doped with Cu2+ ions”, J. Mag. Res.,vol. 34, pp. 459–466, 1979. https://doi.org/10.1016/0022-2364(79)90133-1
  12.  E. Krätzig, R. Orlowski, “Light induced charge transport in doped  LiNbO3 and LiTaO3”, Ferroelectrics, vol. 27, pp. 241-244, 1980. https://doi.org/10.1080/00150198008226108
  13. A. Petrosyan, R. Khaghatryan, and E. Sharoyan, “Jahn – Teller Effect in EPR and Optical absorption spectra”, Phys. Stat. Sol.,vol. 122, pp. 725-734, 1984. https://doi.org/10.1002/pssb.2221220238
  14. A. Matkovskii, P. Potera, D. Sugak, Y et al., “Transient and stable color centers in pure and Cu‑doped LiNbO3”, Cryst. Res. Technol.,vol. 38, pp. 388-393, 2003. https://doi.org/10.1002/crat.200310048
  15. P. Potera, S. Ubizskii, D. Sugak, and T. Lukasiewicz, “Colour centres in LiNbO3:Fe and LiNbO3:Cu crystals irradiated by 12C ions”, Radiation Measurements, vol. 42, pp. 232-235, 2007. https://doi.org/10.1016/j.radmeas.2006.12.004
  16. D.L Dexter, “Absorption of light by atoms in solids”, Phys. Rev., vol. 101, pp. 48–55, 1956. https://doi.org/10.1103/PhysRev.101.48
  17. U.Schlarb , K.Betzler, “A generalized Sellmeier equation for the refractive indices of lithium niobate”, Ferroelectrics, vol. 156, pp. 99-104, 1994. https://doi.org/10.1080/00150199408215934
  18. J. Noda, T. Saku, and N. Uchida, “Fabrication of optical waveguiding layer in LiTaO3 by Cu diffusion”, Appl. Phys. Lett., vol. 25, pp. 308–310, 1974. https://doi.org/10.1063/1.1655485
  19. Y.S. Kuzminov, "Electro-optical and nonlinear-optical lithium niobate crystal," Moscow: Main Editorial Board of Physical and Mathematical Literature, 1986 (in Russian).
  20. D.P. Birnie III, “ Analysius of diffusion in lithium niobate”, Review. J. Mat. Sc., vol. 28, pp. 302 – 315, 1993. https://doi.org/10.1007/BF00357800
  21.  F. Caccavale, C. Sada, F. Segato et al., “Copper – lithium ion exchange in LiNbO3”, J. Mater. Res., vol. 15, pp. 1120-1124, 2000.https://doi.org/10.1557/JMR.2000.0159
  22.  R.Sh. Malkovich, Mathematics of diffusion in semi-provodniks, Moscow, Nauka, 1999. (in Russian)