Model of Biomineralization of Ferrum Compounds by Gallionella Cells Immobilized on Contact Loading of Bioreactor

2017;
: pp. 51 – 56
https://doi.org/10.23939/jeecs2017.02.051
Received: November 21, 2017
Revised: December 03, 2017
Accepted: December 06, 2017

O. Kvartenko, I. Gryuk, L. Sabliy. Model of biomineralization of ferrum compounds by Gallionella cells immobilized on contact loading of bioreactor. Energy Eng. Control Syst., 2017, Vol. 3, No. 2, pp. 51 – 56. https://doi.org/10.23939/jeecs2017.02.051

1
National University of Water Environmental Engineering
2
Rivne State Humanitarian University
3
National Technical University of Ukraine " Igor Sikorsky Kyiv Polytechnic Institute"

In the underground waters not polluted by organic compounds the bivalent iron occurs in the form of hydrocarbonates. An inseparable part of ferrum ions are ferrum bacteria. As a result of the literature review carried out it is determined that up till present no mechanism of the impact of additional source of non-organic carbon on the processes of in-cellular metabolism of Gallionella type bacteria had been established. The aim of the paper is the determination of the effect of the additional source of non-organic carbon in the form of Na2CO3 on processes of metabolism and the rate of biochemical oxidation of iron compounds by bacteria Gallionella sp. and the development of the possible mechanism of the assimilation of non-organic carbon in the recovered pentose phosphate cycle. The comprehensive scheme of activating bacteria metabolism developed by us testifies to the possibility of increasing the energy capacity of recovered pentose phosphate cycle, the acceleration of metabolism cycles and the rate of pumping electrons via the fermentative cell system. The totality of presented processes results in speeding up the fermentative oxidation of Fe2+ on the surface of a cell with the final formation of matrix structures of biominerals and the increased efficiency of bioreactors operation.

  1. Czekalla, C. (1985). Quantitative Removal of Iron and Manganese by Microorganisms in Rapid Sand Filters (In Situ Investigations) / C. Czekalla, W. Mevius, H. Hanert // Water Supply. – vol. 3. - Berlin “B”, pp. 111-123.
  2. Seppänen H. (1991). Experiences of Biological iron and manganese removal in Finland. / H.Seppänen// Proc. IWEM ann. Sym. – no 15(1). p. 9-11.
  3. Mouchet, P. (1992). From Conventional to Biological Removal of Iron and Manganese in France/ P. Mouchet,// Journal  of  the  American Water Works Association. - 1992 – vol. 84, no 4, p. 158-167.
  4. Mencha M. N. (2006). Ferrobacteria in water supply systems with underground water sources. / M.N. Mencha// Water Supply and Sanitary Engineering. – No. 7. p. 25–32. (in Russian)
  5. Zhurba M.G. (2006). Biochemical deironing and demanganation of underground water / M.G.Zhurba, Zh.M. Govorova.,  A.N.Kvartenko, O. B. Govorov // Water Supply and Sanitary Engineering.-  No. 9., part 2. pp. 17–23. (in Russian)
  6. Gusev M.V., Mineeva L.A. (2003). Microbiology. Textbook. M .: Academy, – 464 p. (in Russian)
  7. Emerson D., Field E., Chertkov O., Davenport K. W., Goodwin L., Munk C., Nolan M., Woyke T. (2013). Comparative genomics of freshwater Fe-oxidizing bacteria: implications for physiology, ecology, and systematics. Frontiers in Microbiology / Evolutionary and Genomic Microbiology. Volume 4 | Article 254. https://doi.org/10.3389/fmicb.2013.00254
  8. Nicholls, D. G., and Ferguson, S J. (2002). Bioenergetics 3.London: Academic Press.
  9. Refojo,P.N.,Teixeira,M.,and Pereira, M. M. (2012). The alternative complex III: properties and possible mechanisms for electron transfer and energy conservation. Biochim. Biophys. Acta 1817, 1852–1859. https://doi.org/10.1016/j.bbabio.2012.05.003
  10. Gennis, R. B., and Stewart, V. (1996). “Respiration,” in Escherichia coli and Salmonella Cellular and Molecular.
  11. Borisov, V. B., Gennis, R. B., Hemp, J., and Verkhovsky, M. I. (2011). The cytochrome bd respiratory oxygen reductases. Biochim. Biophys. Acta 1807, 1398–1413. https://doi.org/10.1016/j.bbabio.2011.06.016
  12. Hallberg R., Ferris, F Grant (2004). Biomineralization by Gallionella. Geomicrobiology Journal. Vol. 21, P. 325-330. https://doi.org/10.1080/01490450490454001
  13. Kvartenko A., Orlov V., Pletuk O. (2016). Research into the biosorption process of heavy metal ions by the sediments from stations of biological iron removal. Eastern-European Journal of Enterprise Technologies. Vol. 4, No. 10 (88), р. 37 – 43.
  14. Bukreeva V.Yu., Grabovich M.Yu., Eprintsev A.T., Dubinina G.A. (2009). Sorption of colloidal compounds of iron and manganese oxides by means of iron bacteria on sandy loads of treatment facilities of water-lifting stations. / Sorption and chromatographic processes. - V. 9. Iss. 4. P. 506 – 514. (in Russian)