Feasibility Study for Project of Agrophotovoltaic System Based on the Existing Solar Power Plant

2022;
: pp. 73 – 80
https://doi.org/10.23939/jeecs2022.02.073
Received: October 14, 2022
Revised: December 06, 2022
Accepted: December 14, 2022

A. Dutko, Ł. Putz, A. Yatseiko. Feasibility study for project of agrophotovoltaic system based on the existing solar power plant. Energy Engineering and Control Systems, 2022, Vol. 8, No. 2,
pp. 73 – 80. https://doi.org/10.23939/jeecs2022.02.073

1
Lviv Polytechnic National University
2
Poznan University of Technology
3
Lviv Polytechnic National University

The object of the research is an agrophotovoltaic system. An analysis of the operating conditions of one of the existing solar power plants was performed and limitations of electricity generation due to its excess in the power system or due to work mode restrictions both under the normal state of the power grid and under individual emergency or repair modes were identified. This leads to an underproduction of electricity and a decrease in the efficiency of using the installed capacity of the solar power plant (SPP). Therefore, it was proposed to introduce an agrophotovoltaic system, which allows for more efficient use of land resources, it also allows us to increase the yield of agricultural crops that can be planted on the territory of a solar power plant, to eliminate restrictions on the delivery of generated power to the power grid through its direct consumption at the site of the SPP. The feasibility study of the project of an agrophotovoltaic system based on the existing power plant shows that its payback period will not exceed 3 years, and the profit for the 5th year of exploitation of such a system will be up to € 279409.

  1. Blankenship R., Tiede D., Barber J., W. Brudvig G., Fleming G., Ghirardi M., Gunner M., Junge W., Kramer D., Melis A., Moore T., Moser C., G. Nocera D., Nozik A., R. Ort D., Parson W., Prince R., Sayre R. (2011) Comparing photosynthetic and photovoltaic efficiencies and recognizing the potential for improvement. Science (New York, NY). 332. https://doi.org/10.1126/science.1200165
  2. Nonhebel S. (2005) Renewable energy and food supply: will there be enough country? Renew. Sust. Energy Rev. 9:191–201. https://doi.org/10.1016/j.rser.2004.02.003
  3. Goetzberger A., Zastrow A. (1982) On the coexistence of solar energy conversion and plant cultivation. Int. J. Solar Energy. 1:55–69. https://doi.org/10.1080/01425918208909875
  4. Valle B., Simonneau T., Sourd F., Pechier P., Hamard P., Frisson T., Ryckewaert M., Christophe A. (2017) Increasing the total productivity of a land by combining mobile photovoltaic panels and food crops. Appl. Energy. 206:1495–1507. https://doi.org/10.1016/j.apenergy.2017.09.113
  5. Elamri Y., Cheviron B., Lopez J.M., Dejean C., Belaud G. (2018) Water budget and crop modelling for agrivoltaic systems: application that irrigated lettuces. Agric. Water Manag. 208:440–453. https://doi.org/10.1016/j.agwat.2018.07.001
  6. Hannah L., Roehrdanz P.R., Ikegami M., Shepard A.V., Shaw M.R., Tabor G., Zhi L., Marquet P.A., Hijmans R.J. (2013) Climate change, wine, and conservation. Proc. Natl. Acad. Sci. USA. 110:6907–6912. https://doi.org/10.1073/pnas.1210127110
  7. Hassanpour Adeh E., Selker J.S., Higgins C.W. (2018) Remarkable agrivoltaic influence he soil moisture, micrometeorology and water- use efficiency. PLOS ONE 13(11):e0203256. https://doi.org/10.1371/journal.pone.0203256
  8. Ravi S., Macknick J., Lobell D., Field C., Ganesan K., Jain R., Elchinger M., Stoltenberg B. (2016) Colocation opportunities for large solar infrastructures and agriculture in drylands. Appl. Energy. 165:383–392. https://doi.org/10.1016/j.apenergy.2015.12.078
  9. Casarin D. (2012) R.E.M. Talk about the "Agrovoltaic": when agriculture discovers the photovoltaic, [Electronic resource]. Access mode: http://www.genitronsviluppo.com/2012/07/30/rem-agrovoltaico/ (in Italian)
  10. Rem Tec (2017) AGROVOLTAICO® TECHNOLOGY, [Electronic resource]. Access mode: https://www.remtec.energy/en/agrovoltaico/
  11. Corditec (2017) Our plant – Eco Field , [Electronic resource]. Access mode: http://corditec.it/solare/pagecampo.php?page=impianto&title=campo%20d%27eco&id=77  (in Italian)
  12. Dupraz C., Marrou H., Talbot G., Dufour L., Nogier A., Ferard Y. (2011) Combining solar photovoltaic panels and food crops for optimizing land use: towards new agrivoltaic schemes. Renew. Energy. 36: 2725–2732. https://doi.org/10.1016/j.renene.2011.03.005
  13. Marrou H., Dufour L., Wery J. (2013) How does a shelter of solar panels influence water flows in a soil – crop system? Eur. J. Agron. 50:38–51. https://doi.org/10.1016/j.eja.2013.05.004
  14. Valle B., Simonneau T., Sourd F., Pechier P., Hamard P., Frisson T., Ryckewaert M., Christophe A. (2017) Increasing the total productivity of a land by combining mobile photovoltaic panels and food crops. Appl. Energy. 206:1495–1507. https://doi.org/10.1016/j.apenergy.2017.09.113
  15. Fraunhofer Chile Research (2017) FIC AGRO PV Metropolitan Region: project progress. Presentation. March 2017. (in Spanish)
  16. Kinney K., Minor R., Barron-Gafford G. (2016) Testing predictions used to build an agrivoltaics installation on a small scale educational model. University of Montana, [Electronic resource]. Access mode: http://digitalcommons.calpoly.edu/star/386
  17. Pallone T. (2017) Agrivoltaics: how plants grown under Solar panels can benefit humankind, [Electronic resource]. Access mode: http://insights.globalspec.com/article/4802/agrivoltaics-how-plants-grown-under-solar-panels-can-benefithumankind?id=-777656564 ,
  18. A. Weselek, A. Ehmann, S. Zikeli, I. Lewandowski, S. Schindele, et al. Agrophotovoltaic systems: applications, challenges, and opportunities. A review. Agronomy for Sustainable Development, 2019, 39 (4), pp.35. https://doi.org/10.1007/s13593-019-0581-3
  19. Tonking New Energy (2018) Changshan PV station, [Electronic resource]. Access mode: http://tonkingtech.com/english/news_show.aspx?newsCateid=117&cateid=117&NewsId=137 ,
  20. Campana P.E., Leduc S., Kim M., Olsson A., Zhang J., Liu J., Kraxner F., McCallum I., Li H., Yan J. (2017) Suitable and optimal locations for implementing photovoltaic water pumping systems for grassland irrigation in China. Appl. Energy. 185:1879–1889. https://doi.org/10.1016/j.apenergy.2016.01.004
  21. Du F., Deng W., Yang M., Wang H., Mao R., Shao J., Fan J., Chen Y., Fu Y., Li C., He X., Zhu Y., Zhu S. (2015) Protecting grapevines from rainfall in rainy conditions reduces disease severity and enhances profitability. Crop Prot. 67:261–268. https://doi.org/10.1016/j.cropro.2014.10.024
  22. Amaducci S., Yin X., Colauzzi M. (2018) Agrivoltaic systems that optimize land use for electric energy production. Appl. Energy. 220:545–561. https://doi.org/10.1016/j.apenergy.2018.03.081
  23. Zoellner J., Schweizer-Ries P., Wemheuer C. (2008) Public acceptance of renewable energies: results from case studies in Germany . Energy Policy. 36:4136–4141. https://doi.org/10.1016/j.enpol.2008.06.026
  24. DAKAR Eleks. Real-time power system management tool for modeling, analysis, planning, and optimization of modern electrical networks. [Electronic resource]. Access mode: https://dakar.eleks.com/en/
  25. State register of plant varieties suitable for distribution in Ukraine. Kyiv: Derzhkomstat of Ukraine, 2020. 447 p. (in Ukrainian)
  26. I.S. Kudinenko. Mathematics of agribusiness: cultivation of asparagus. 2018. [Electronic resource]. Access mode: https://kurkul.com/blog/584-matematika-agrobiznesu-viroschuvannya-sparji (in Ukrainian)
  27. Mariupol Farm "AZOV". How many seedlings per hectare – Calculator. [Electronic resource]. Access mode:  https://plodopitomnik.com.ua/raschet-sazhencev-na-gektar/ (in Ukrainian)
  28. F. Belane. Asparagus. - Agropromizdat, 1986.- 128 p. (in Russian)
  29. N. Biliera. Fertigation is innovative approach to fertilization of agricultural crops. Agronom. – 12.07.2018 [Electronic resource]. Access mode:  https://www.agronom.com.ua/fertygatsiya-innovatsijnyj-pidhid-do-udobrenn.... (in Ukrainian)