We consider Maxwell equations with the null one-way condition in the Kerr space-time. For each ODE equation, which is obtained by using the method of separable variables, we impose some boundary conditions. This is resulting in the boundedness of the separation constant $\omega$ and in fixing the azimuthal number $m$ by the values $\pm 1$. The problem considered demonstrates physical applicability of singular solutions and presents an interest for astrophysics.

- Teukolsky S. A. Perturbations of a rotating black hole. I. Fundamental equations for gravitational, electromagnetic, and neutrino-ﬁeld perturbations. The Astrophysical Journal.
**185**, 635–647 (1973). - Fiziev P. P. Classes of exact solutions to the Teukolsky master equation. Classical and Quantum Gravity.
**27**(13), 135001 (2010). - Borissov R. S., Fiziev P. P. Exact solutions of Teukolsky master equation with continious spectrum. Bulg. J. Phys.
**37**, 065–089 (2010); arXiv:0903.3617v3 [gr-qc] (2010). - Pelykh V. O., Taistra Y. V. A Class of General Solutions of the Maxwell Equations in the Kerr Space-Time. J. Math. Sci.
**229**(2), 162–173 (2018). - Torres del Castillo G. P. 3-D spinors, spin-weighted functions and their applications. Vol. 20 of Progress in mathematical physics. New York, Springer Science+Business Media, LLC (2003).
- Visser M. The Kerr spacetime: A Brief introduction. In Kerr Fest: Black Holes in Astrophysics, General Relativity and Quantum Gravity Christchurch. New Zealand (2004), (2007).
- O’Neill B. The geometry of Kerr black holes. Wellesley, Massachusetts, Reprint of the A. K. Peters (1995).
- Pelykh V. O., Taistra Y. V. Null one-way ﬁelds in the Kerr spacetime. Ukr. Journ. of Phys.
**62**(11), 1007–1013 (2017). - Penrose R., Rindler W. Spinors and space-time. Two-spinor calculus and relativistic ﬁelds. Vol. 1. Cambridge University Press (1984).
- Kinnersley W. Type D vacuum metrics. J. Math. Phys.
**10**, 1195–1203 (1969). - Stewart J. M. Advanced general relativity. Cambridge University Press (1991).
- O’Donnell P. Introduction to 2-Spinors in General Relativity. World Scientiﬁc (2003).
- Pelykh V. O., Taistra Y. V. Solution with Separable Variables for Null One-way Maxwell Field in Kerr Space-time. Acta Phys. Polon. Supp.
**10**, 387–390 (2017). - Starobinskii A. A., Churilov S. M. Ampliﬁcation of electromagnetic and gravitational waves scattered by a rotating “black hole”. Zh. Eksp. Teor. Fiz.
**65**, 3–11 (1973). - Chandrasekhar S. The mathematical theory of black holes. New York, Oxford Univ. Press (1983).
- Pelykh V., Taistra Y. A class of exact solutions of Maxwell equations in Kerr space-time and their physical manifestations. In The third Zeldovich meeting SNAUPS-2018, 23–27 April 2018, Minsk, Belarus. Institute of Physics NAS of Belarus (2018).
- Gnedin N. I., Dymnikova I. G. Rotation of the plane of polarization of a photon in space-time of the D type according to the Petrov classiﬁcation. Zhurnal Eksperimentalnoi i Teoreticheskoi Fiziki.
**94**, 26–31 (1988), (in Russian).

Math. Model. Comput. Vol. 5, No. 2, pp. 201-206 (2018)