We consider Maxwell equations with the null one-way condition in the Kerr space-time. For each ODE equation, which is obtained by using the method of separable variables, we impose some boundary conditions. This is resulting in the boundedness of the separation constant $\omega$ and in fixing the azimuthal number $m$ by the values $\pm 1$. The problem considered demonstrates physical applicability of singular solutions and presents an interest for astrophysics.
- Teukolsky S. A. Perturbations of a rotating black hole. I. Fundamental equations for gravitational, electromagnetic, and neutrino-field perturbations. The Astrophysical Journal. 185, 635–647 (1973).
- Fiziev P. P. Classes of exact solutions to the Teukolsky master equation. Classical and Quantum Gravity. 27 (13), 135001 (2010).
- Borissov R. S., Fiziev P. P. Exact solutions of Teukolsky master equation with continious spectrum. Bulg. J. Phys. 37, 065–089 (2010); arXiv:0903.3617v3 [gr-qc] (2010).
- Pelykh V. O., Taistra Y. V. A Class of General Solutions of the Maxwell Equations in the Kerr Space-Time. J. Math. Sci. 229 (2), 162–173 (2018).
- Torres del Castillo G. P. 3-D spinors, spin-weighted functions and their applications. Vol. 20 of Progress in mathematical physics. New York, Springer Science+Business Media, LLC (2003).
- Visser M. The Kerr spacetime: A Brief introduction. In Kerr Fest: Black Holes in Astrophysics, General Relativity and Quantum Gravity Christchurch. New Zealand (2004), (2007).
- O’Neill B. The geometry of Kerr black holes. Wellesley, Massachusetts, Reprint of the A. K. Peters (1995).
- Pelykh V. O., Taistra Y. V. Null one-way fields in the Kerr spacetime. Ukr. Journ. of Phys. 62 (11), 1007–1013 (2017).
- Penrose R., Rindler W. Spinors and space-time. Two-spinor calculus and relativistic fields. Vol. 1. Cambridge University Press (1984).
- Kinnersley W. Type D vacuum metrics. J. Math. Phys. 10, 1195–1203 (1969).
- Stewart J. M. Advanced general relativity. Cambridge University Press (1991).
- O’Donnell P. Introduction to 2-Spinors in General Relativity. World Scientific (2003).
- Pelykh V. O., Taistra Y. V. Solution with Separable Variables for Null One-way Maxwell Field in Kerr Space-time. Acta Phys. Polon. Supp. 10, 387–390 (2017).
- Starobinskii A. A., Churilov S. M. Amplification of electromagnetic and gravitational waves scattered by a rotating “black hole”. Zh. Eksp. Teor. Fiz. 65, 3–11 (1973).
- Chandrasekhar S. The mathematical theory of black holes. New York, Oxford Univ. Press (1983).
- Pelykh V., Taistra Y. A class of exact solutions of Maxwell equations in Kerr space-time and their physical manifestations. In The third Zeldovich meeting SNAUPS-2018, 23–27 April 2018, Minsk, Belarus. Institute of Physics NAS of Belarus (2018).
- Gnedin N. I., Dymnikova I. G. Rotation of the plane of polarization of a photon in space-time of the D type according to the Petrov classification. Zhurnal Eksperimentalnoi i Teoreticheskoi Fiziki. 94, 26–31 (1988), (in Russian).