The new non-Markovian diffusion equations of ions in spatially heterogeneous environment with fractal structure and generalized Cattaneo--Maxwell diffusion equation with taking into account the space-time nonlocality are obtained. Dispersion relations for the Cattaneo--Maxwell-type diffusion equation with taking into account the space-time nonlocality in fractional derivatives are found. The frequency spectrum, phase and group velocities are calculated. It is shown that it has a wave behavior with discontinuities, which are also manifested in behavior of the phase velocity.
- Oldham K. B., Spanier J. The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order. Dover Books on Mathematics, Dover Publications (2006).
- Samko S. G., Kilbas A. A., Marichev O. I. Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach Science Publishers (1993).
- Podlubny I., Kenneth V. T. E. Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications. Mathematics in Science and Engineering 198, Academic Press (1998).
- Mandelbrot B. B. The fractal geometry of nature. W. H. Freeman and Company (1982).
- Uchaikin V. V. Fractional Derivatives Method. Artishock-Press, Uljanovsk (2008), (in Russian).
- Sahimi M. Non-linear and non-local transport processes in heterogeneous media: from long-range correlated percolation to fracture and materials breakdown. Physics Reports. 306 (4--6), 213--395 (1998).
- Korošak D., Cvikl B., Kramer J., Jecl R., Prapotnik A. Fractional calculus applied to the analysis of spectral electrical conductivity of clay–water system. Journal of Contaminant Hydrology. 92 (1–2), 1--9 (2007).
- Metzler R., Klafter J. The random walk's guide to anomalous diffusion: a fractional dynamics approach. Physics Reports. 339 (1), 1--77 (2000).
- Hilfer R. Fractional Time Evolution, chapter II, pp. 87--130. World Scientific, Singapore, New Jersey, London, Hong Kong (2000).
- Bisquert J., Garcia-Belmonte G., Fabregat-Santiago F., Ferriols N. S., Bogdanoff P., Pereira E. C. Doubling Exponent Models for the Analysis of Porous Film Electrodes by Impedance. Relaxation of TiO$_2$ Nanoporous in Aqueous Solution. The Journal of Physical Chemistry. 104 (10), 2287--2298 (2000).
- Bisquert J., Compte A. Theory of the electrochemical impedance of anomalous diffusion. Journal of Electroanalytical Chemistry. 499 (1), 112--120 (2001).
- Kosztołowicz T., Lewandowska K. D. Hyperbolic subdiffusive impedance. Journal of Physics A: Mathematical and Theoretical. 42 (5), 055004 (2009).
- Pyanylo Y. D., Prytula M. G., Prytula N. M., Lopuh N. B. Models of mass transfer in gas transmission systems. Mathematical Modeling and Computing. 1 (1), 84--96 (2014).
- Zhokh A., Trypolskyi A., Strizhak P. Relationship between the anomalous diffusion and the fractal dimension of the environment. Chemical Physics. 503, 71--76 (2018).
- Zhokh A. A., Strizhak P. E. Effect of zeolite ZSM-5 content on the methanol transport in the ZSM-5/alumina catalysts for methanol-to-olefin reaction. Chemical Engineering Research and Design. 127, 35--44 (2017).
- Zhokh A., Strizhak P. Non-Fickian diffusion of methanol in mesoporous media: Geometrical restrictions or adsorption-induced? The Journal of Chemical Physics. 146 (12), 124704 (2017).
- Scher H., Montroll E. W. Anomalous transit-time dispersion in amorphous solids. Phys. Rev. B. 12 (6), 2455--2477 (1975).
- Berkowitz B., Scher H. Theory of anomalous chemical transport in random fracture networks. Phys. Rev. E. 57 (5), 5858--5869 (1998).
- Bouchaud J. P., Georges A. Anomalous diffusion in disordered media: Statistical mechanisms, models and physical applications. Physics Reports. 195 (4), 127--293 (1990).
- Nigmatullin R. R. To the Theoretical Explanation of the "Universal Response''. Physica Status Solidi (B). 123 (2), 739--745 (1984).
- Nigmatullin R. R. On the Theory of Relaxation for Systems with "Remnant'' Memory. Physica Status Solidi (B). 124 (1), 389--393 (1984).
- Nigmatullin R. R. The realization of the generalized transfer equation in a medium with fractal geometry. Physica Status Solidi (B). 133 (1), 425--430 (1986).
- Nigmatullin R. R. Fractional integral and its physical interpretation. Theoretical and Mathematical Physics. 90 (3), 242--251 (1992).
- Nigmatullin R. R., Ryabov Y. E. Cole--Davidson dielectric relaxation as a self-similar relaxation process. Physics of the Solid State.39 (1), 87--90 (1997).
- Nigmatullin R. R. Dielectric relaxation phenomenon based on the fractional kinetics: theory and its experimental confirmation. Physica Scripta. T136, 014001 (2009).
- Khamzin A. A., Nigmatullin R. R., Popov I. I. Microscopic model of a non-Debye dielectric relaxation: The Cole--Cole law and its generalization. Theoretical and Mathematical Physics. 173 (2), 1604--1619 (2012).
- Popov I. I., Nigmatullin R. R., Koroleva E. Y., Nabereznov A. A. The generalized {Jonscher's} relationship for conductivity and its confirmation for porous structures. Journal of Non-Crystalline Solids. 358 (1), 1--7 (2012).
- Grygorchak I. I., Kostrobij P. P., Stasjuk I. V., Tokarchuk M. V., Velychko O. V., Ivaschyshyn F. O., Markovych B. M. Fizichni procesy ta ih mikroskopichni modeli v periodychnyh neorganichno/organichnih klatratah. Rastr-7, Lviv (2015), (in Ukrainian).
- Kostrobij P. P., Grygorchak I. I., Ivaschyshyn F. O., Markovych B. M., Viznovych O. V., Tokarchuk M. V. Mathematical modeling of subdiffusion impedance in multilayer nanostructures. Mathematical Modeling and Computing. 2 (2), 154--159 (2015).
- Kostrobij P., Grygorchak I., Ivashchyshyn F., Markovych B., Viznovych O., Tokarchuk M. Generalized Electrodiffusion Equation with Fractality of Space–Time: Experiment and Theory. The Journal of Physical Chemistry A. 122 (16), 4099--4110 (2018).
- Balescu R. Anomalous transport in turbulent plasmas and continuous time random walks. Phys. Rev. E. 51 (5), 4807--4822 (1995).
- Tribeche M., Shukla P. K. Charging of a dust particle in a plasma with a non extensive electron distribution function. Physics of Plasmas. 18 (10), 103702 (2011).
- Gong J., Du J. Dust charging processes in the nonequilibrium dusty plasma with nonextensive power-law distribution. Physics of Plasmas. 19 (2), 023704 (2012).
- Carreras B. A., Lynch V. E., Zaslavsky G. M. Anomalous diffusion and exit time distribution of particle tracers in plasma turbulence model. Physics of Plasmas. 8 (12), 5096--5103 (2001).
- Tarasov V. E. Electromagnetic field of fractal distribution of charged particles. Physics of Plasmas. 12 (8), 082106 (2005).
- Tarasov V. E. Magnetohydrodynamics of fractal media. Physics of Plasmas. 13 (5), 052107 (2006).
- Monin A. S. Uravnenija turbulentnoj difuzii. DAN SSSR, ser. geofiz. 2, 256--259 (1955), (in Russian).
- Klimontovich J. L. Vvedenie v fiziku otkrytyh sistem. Moskva, Janus (2002), (in Russian).
- Zaslavsky G. M. Chaos, fractional kinetics, and anomalous transport. Physics Reports. 371 (6), 461--580 (2002).
- Tarasov V. E. Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media. Nonlinear Physical Science, Springer Berlin Heidelberg (2010).
- Zaslavsk G. M. Fractional kinetic equation for Hamiltonian chaos. Physica D: Nonlinear Phenomena. 76 (1), 110--122 (1994).
- Saichev A. I., Zaslavsky G. M. Fractional kinetic equations: solutions and applications. Chaos. 7 (4), 753--764 (1997).
- Zaslavsky G. M., Edelman M. A. Fractional kinetics: from pseudochaotic dynamics to Maxwell’s Demon. Physica D: Nonlinear Phenomena. 193 (1–4), 128--147 (2004).
- Nigmatullin R. 'Fractional' kinetic equations and ‘universal’ decoupling of a memory function in mesoscale region. Physica A: Statistical Mechanics and its Applications. 363 (2), 282--298 (2006).
- Chechkin A. V., Gonchar V. Y., Szydłowski M. Fractional kinetics for relaxation and superdiffusion in a magnetic field. Physics of Plasmas. 9 (1), 78--88 (2002).
- Gafiychuk V. V., Datsko B. Y. Stability analysis and oscillatory structures in time-fractional reaction-diffusion systems. Phys. Rev. E. 75 (5), 055201 (2007).
- Kosztołowicz T., Lewandowska K. D. Time evolution of the reaction front in a subdiffusive system. Phys. Rev. E. 78 (6), 066103 (2008).
- Shkilev V. P. Subdiffusion of mixed origin with chemical reactions. Journal of Experimental and Theoretical Physics. 117 (6), 1066--1070 (2013).
- Hobbie R. K., Roth B. J. Intermediate Physics for Medicine and Biology. Springer-Verlag, New York (2007).
- Jeon J. H., Monne H. M. S., Javanainen M., Metzler R. Anomalous Diffusion of Phospholipids and Cholesterols in a Lipid Bilayer and its Origins. Phys. Rev. Lett. 109 (18), 188103 (2012).
- Höfling F., Franosch T. Anomalous transport in the crowded world of biological cells. Reports on Progress in Physics. 76 (4), 046602 (2013).
- Uchaikin V. V. Fractional phenomenology of cosmic ray anomalous diffusion. Physics-Uspekhi. 56 (11), 1074--1119 (2013).
- Szymanski J., Weiss M. Elucidating the Origin of Anomalous Diffusion in Crowded Fluids. Phys. Rev. Lett. 103 (3), 038102 (2009).
- Sandev T., Tomovski Z., Dubbeldam J. L. A., Chechkin A. Generalized diffusion-wave equation with memory kernel. Journal of Physics A: Mathematical and Theoretical. 52 (1), 015201 (2018).
- Sandev T., Metzler R., Chechkin A. Generalised Diffusion and Wave Equations: Recent Advances. arXiv:1903.01166 (2019).
- Giusti A. Dispersion relations for the time-fractional Cattaneo--Maxwell heat equation. Journal of Mathematical Physics. 59 (1), 013506 (2018).
- Kostrobij P., Markovych B., Viznovych O., Tokarchuk M. Generalized diffusion equation with fractional derivatives within Renyi statistics. Journal of Mathematical Physics. 57 (9), 093301 (2016).
- Kostrobij P., Markovych B., Viznovych O., Tokarchuk M. Generalized electrodiffusion equation with fractality of space--time. Mathematical Modeling and Computing. 3 (2), 163--172 (2016).
- Glushak P. A., Markiv B. B., Tokarchuk M. V. Zubarev's Nonequilibrium Statistical Operator Method in the Generalized Statistics of Multiparticle Systems. Theoretical and Mathematical Physics. 194 (1), 57--73 (2018).
- Kostrobij P., Markovych B., Viznovych O., Tokarchuk M. Generalized transport equation with nonlocality of space–-time. Zubarev’s NSO method. Physica A: Statistical Mechanics and its Applications. 514, 63--70 (2019).
- Zubarev D. N. Modern methods of the statistical theory of nonequilibrium processes. Journal of Soviet Mathematics. 16 (6), 1509--1571 (1981).
- Zubarev D. N., Morozov V. G., Röpke G. Statistical mechanics of nonequilibrium processes. Vol. 1. Moscow, Fizmatlit (2002), (in Russian).
- Zubarev D. N., Morozov V. G., Röpke G. Statistical mechanics of nonequilibrium processes. Vol. 2. Moscow, Fizmatlit (2002), (in Russian).
- Markiv B., Tokarchuk R., Kostrobij P., Tokarchuk M. Nonequilibrium statistical operator method in Renyi statistics. Physica A: Statistical Mechanics and its Applications. 390 (5), 785--791 (2011).
- Cottrill-Shepherd K., Naber M. Fractional differential forms. Journal of Mathematical Physics. 42 (5), 2203--2212 (2001).
- Mainardi F. Fractional Calculus. Springer, Vienna (1997).
- Caputo M., Mainardi F. A new dissipation model based on memory mechanism. Pure and Applied Geophysics. 91 (1), 134--147 (1971).