On an invariant of a non-stationary model of pipelines gas flow

2019;
: pp. 116-128
https://doi.org/10.23939/mmc2019.01.116
Received: December 22, 2018
Revised: April 23, 2019
Accepted: April 25, 2019
1
Centre of Mathematical Modelling of Pidstryhach Institute for Applied Problems of Mechanics and Mathematics, National Academy of Sciences of Ukraine
2
Institute of Gas Transmission PJSC Ukrtransgas
3
Centre of Mathematical Modelling of Pidstryhach Institute for Applied Problems of Mechanics and Mathematics NAS of Ukraine
4
Lviv Polytechnic National University

A problem of gas balance analysis in the gas transportation system objects and the factors of influence on the accuracy of its installation are considered.  It is shown that the problem of accuracy of calculation of the individual balance indicators can be effectively solved.  For this purpose, the invariants of the mathematical model of gas flow are used.  The carried out computational experiments have confirmed the sufficient accuracy of the suggested approach.

  1. Navarro A., Begovich O., Sánchez J., Besancon G.  Real-Time Leak Isolation Based on State Estimation with Fitting Loss Coefficient Calibration in a Plastic Pipeline.  Asian Journal of Control. 19, 255--265 (2017).
  2. Murvay P. S., Silea I. A.  Survey on gas leak detection and localization techniques.  Journal of Loss Prevention in the Process Industries. 25, 966--973 (2012).
  3. Asgari H. R., Maghrebi M. F.  Application of nodal pressure measurements in leak detection.  Flow Measurement and Instrumentation. 50, 128--134 (2016).
  4. Tao W., Dongying W., Yu P., Wei F.  Gas leak localization and detection method based on a multi-point ultrasonic sensor array with TDOA algorithm.  Measurement Science and Technology. 26 (2), 095002 (2015)Daneti M.  On using double power spectral density information for leak detection.  2013 IEEE International Conference on Industrial Technology (ICIT), Cape Town. 1162--1167 (2013).
  5. Ekuakille A. L., Vergallo P.  Decimated signal diagonalization method for improved spectral leak detection in pipelines.  IEEE Sensors Journal. 14 (6), 1741--1748 (2014).
  6. Hou C. X., Zhang E. H.  Pipeline leak detection based on double sensor negative pressure wave.  Applied Mechanics and Materials. 313, 1225--1228 (2013).
  7. Akopova G., Dorokhova E., Popov P.  Estimation of volumes of methane losses with leaks from the technological equipment of gas transportation objects of USO "Gazprom''.  Scientific-technical collection of News Gas Science. 2 (13), 63--67 (2013).
  8. Pyanylo Ya. D., Prytula M. G., Prytula N. M.  Models of mass transfer in gas transmission systems.  Mathematical modeling and computing. 1 (1), 84--96 (2014).
  9. Pyanylo Ya., Prytula M., Prytula N.  Mathematical models of unstable gas motion in objects of gas transmission systems.  Physical-mathematical modeling and informational technologies. 4, 69--77 (2006).
  10. Altshul A. D.  Hydraulic resistance.  Moscow, Nedra (1982), (in Russian).
  11. Sinchuk Yu., Prytula N., Prytula M.  Modeling of non-stationary modes of gas networks.  Bulletin of Lviv Polytechnic National University. Computer Sciences and Informational Technologies. 663, 128--132 (2010).
  12. Ditkin V., Prudnikov A.  Handbook of operational calculus.  Moscow, High school (1965), (in Russian).
Math. Model. Comput. Vol.6, No.1, pp.116-128 (2019)