Adsorption of decorated nanoparticles on a liquid crystalline polymer brush: molecular dynamics study

2020;
: pp. 207–218
https://doi.org/10.23939/mmc2020.02.207
Received: March 25, 2020
Accepted: June 16, 2020
1
Lviv Polytechnic National University
2
Institute for Condensed Matter Physics of the National Academy of Sciences of Ukraine
3
Institute for Condensed Matter Physics of the National Academy of Sciences of Ukraine

We consider a solution of nanoparticles in a pore with one of its walls being a liquid crystalline polymer brush.  Both nanoparticles' ligands and the brush molecules side chains contain the same liquid crystalline groups.  The system is studied using the molecular dynamics simulations.  At both cases of a low and high brush density, the aggregation between the pairs of nanoparticles in a bulk and between the brush molecules prevail.  However, we found a specific brush density when the nanoparticles are adsorbed more readily on a brush than aggregate in a bulk.  A set of density profiles as well as the dynamical properties of nanoparticles are analysed in all cases considered.

  1. Lu Y., Liu J.  Catalyst-functionalized nanomaterials.  Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology.  1 (1), 35–46 (2008).
  2. Pawar A. B., Kretzschmar I.  Fabrication, Assembly, and Application of Patchy Particles.  Macromolecular Rapid Communications.  31, 150–168 (2010).
  3. Li Z. W., Zhu Y. L., Lu Z. Y., Sun Z. Y.  A versatile model for soft patchy particles with various patch arrangements.  Soft Matter.  12 (3), 741–749 (2016).
  4. Toshima N.  Metal Nanoparticles for Catalysis.  ChemInform.  35 (34), 79–96 (2004).
  5. Katz E., Shipway A. N., Willner I.  Chemically Functionalized Metal Nanoparticles. Sythesis, Properties and Applications,  in L. M. Liz-Marzan, P. V. Kamat, editors.  Nanoscale Materials, chapter 2, pp. 5–78, Nanoscale Materials (2003).
  6. Amendola V., Pilot R., Frasconi M., Maragò O. M., Iatì M. A.  Surface plasmon resonance in gold nanoparticles: a review.  Journal of Physics: Condensed Matter.  29 (20), 203002 (2017).
  7. Alshammari A., Kalevaru V. N.  Supported Gold Nanoparticles as Promising Catalysts, in Catalytic Application of Nano-Gold Catalysts.  InTech (2016).
  8. Choueiri R. M., Galati E., Thérien-Aubin H., Klinkova A., Larin E. M., Querejeta-Fernández A., Han L., Xin H. L., Gang O., Zhulina E. B.,  Rubinstein M., Kumacheva E.  Surface patterning of nanoparticles with polymer patches.  Nature.  538 (7623), 79–83 (2016).
  9. Kumar S., Pal S. K., Lakshminarayanan V.  Discotic-Decorated Gold Nanoparticles.  Molecular Crystals and Liquid Crystals.  434 (1), 251/[579]–258/[586] (2005).
  10. Sergeyev S., Pisula W., Geerts Y. H.  Discotic liquid crystals: a new generation of organic semiconductors.  Chemical Society  Reviews.  36 (12), 1902 (2007).
  11. Kumar S.  Discotic liquid crystal-nanoparticle hybrid systems.  NPG Asia Materials.  6 (1), e82 (2014).
  12. Yan W., Seifermann S. M., Pierrat P., Bräse S.  Synthesis of highly functionalized C$_60$ fullerene derivatives and their applications in material and life sciences.  Organic & Biomolecular Chemistry.  13 (1), 25–54 (2015).
  13. De D. S., Flores-Livas J. A., Saha S., Genovese L., Goedecker S.  Stable structures of exohedrally decorated C60-fullerenes.  Carbon.  129, 847–853 (2018).
  14. Zhang G., Chen Q., Zhang Y., Kong L., Tao X., Lu H., Tian Y., Yang J. Bulky group functionalized porphyrin and its Zn ({II}) complex with high emission in aggregation.  Inorganic Chemistry Communications.  46, 85–88 (2014).
  15. Hvolbæk B., Janssens T. V., Clausen B. S., Falsig H., Christensen C. H., Nørskov J. K.  Catalytic activity of Au nanoparticles.  Nano Today.  2 (4), 14–18 (2007).
  16. Thompson D. T.  Using gold nanoparticles for catalysis.  Nano Today.  2 (4), 40–43 (2007).
  17. Yeh Y. C., Creran B., Rotello V. M.  Gold nanoparticles: preparation, properties, and applications in bionanotechnology.  Nanoscale.  4 (6), 1871–1880 (2012).
  18. Das M., Shim K. H., An S. S. A., Yi D. K.  Review on gold nanoparticles and their applications.  Toxicology and Environmental Health Sciences.  3 (4), 193–205 (2011).
  19. Pranami G.  Understanding nanoparticle aggregation.  Ph.D. thesis, Graduate College, Iowa State University, 10859 (2009).
  20. Gerth M., Voets I. K.  Molecular control over colloidal assembly.  Chemical Communications.  53 (32), 4414–4428 (2017).
  21. Yang Y., Matsubara S., Nogami M., Shi J.  Controlling the aggregation behavior of gold nanoparticles.  Materials Science and Engineering: B. 140 (3), 172–176 (2007).
  22. Chegel V., Rachkov O., Lopatynskyi A., Ishihara S., Yanchuk I., Nemoto Y., Hill J. P., Ariga K.  Gold Nanoparticles Aggregation: Drastic Effect of Cooperative Functionalities in a Single Molecular Conjugate.  The Journal of Physical Chemistry C.  116 (4), 2683–2690 (2012).
  23. Gao B., Rozin M. J., Tao A. R.  Plasmonic nanocomposites: polymer-guided strategies for assembling metal nanoparticles.  Nanoscale.  5 (13), 5677 (2013).
  24. Yi C., Zhang S., Webb K. T., Nie Z.  Anisotropic Self-Assembly of Hairy Inorganic Nanoparticles.  Accounts of Chemical Research.  50 (1), 12–21 (2016).
  25. Rotello V. M.  Interfacing Inorganic Nanoparticles with Biology.  Bioconjugate Chemistry.  28 (1), 1–2 (2017).
  26. Posel Z., Posocco P., Lísal M., Fermeglia M., Pricl S.  Highly grafted polystyrene/polyvinylpyridine polymer gold nanoparticles in a good solvent: effects of chain length and composition.  Soft Matter. 12 (15), 3600–3611 (2016).
  27. Klajn R., Bishop K. J. M., Grzybowski B. A.  Light-controlled self-assembly of reversible and irreversible nanoparticle suprastructures.  Proceedings of the National Academy of Sciences.  104 (25), 10305–10309 (2007).
  28. Kawai T., Sumi A., Morita C., Kondo T.  Preparation and photocoagulation in chloroform of Au nanoparticles capped with azobenzene-derivatized alkanesulfides.  Colloids and Surfaces A: Physicochemical and Engineering Aspects.  321 (1–3), 308–312 (2008).
  29. Wei Y., Han S., Kim J., Soh S., Grzybowski B. A.  Photoswitchable Catalysis Mediated by Dynamic Aggregation of Nanoparticles.  Journal of the American Chemical Society.  132 (32), 11018–11020 (2010).
  30. Lysyakova L., Lomadze N., Neher D., Maximova K., Kabashin A. V., Santer S.  Light-Tunable Plasmonic Nanoarchitectures Using Gold Nanoparticle{\textendash}Azobenzene-Containing Cationic Surfactant Complexes.  The Journal of Physical Chemistry C.  119 (7), 3762–3770 (2015).
  31. Freund H. J., Libuda J., Bäumer M., Risse T., Carlsson A.  Cluster, facets, and edges: Site-dependent selective chemistry on model catalysts.  The Chemical Record.  3 (3), 181–201 (2003).
  32. Sperling R. A., Parak W. J.  Surface modification, functionalization and bioconjugation of colloidal inorganic nanoparticles.  Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.  368 (1915), 1333–1383 (2010).
  33. Gröschel A. H., Walther A., Löbling T. I., Schacher F. H., Schmalz H., Müller A. H. E.  Guided hierarchical co-assembly of soft patchy nanoparticles.  Nature.  503 (7475), 247–251 (2013).
  34. Zhou Y., Ma X., Zhang L., Lin J.  Directed assembly of functionalized nanoparticles with amphiphilic diblock copolymers.  Physical Chemistry Chemical Physics.  19 (28), 18757–18766 (2017).
  35. Ilnytskyi J. M., Slyusarchuk A., Sokołowski S.  Gelation of patchy ligand shell nanoparticles decorated by liquid-crystalline ligands: computer simulation study.  Soft Matter.  14 (19), 3799–3810 (2018).
  36. Nandivada H., Ross A. M., Lahann J.  Stimuli-responsive monolayers for biotechnology.  Progress in Polymer Science.  35 (1–2), 141–154 (2010).
  37. Hou L., Wang L., Zhang N., Xie Z., Dong D.  Polymer brushes on metal–organic frameworks by UV-induced photopolymerization.  Polymer Chemistry.  7 (37), 5828–5834 (2016).
  38. Feng C., Huang X.  Polymer Brushes: Efficient Synthesis and Applications.  Accounts of Chemical Research.  51 (9), 2314–2323 (2018).
  39. Ilnytskyi J., Lintuvuori J., Wilson M. R.  Simulation of bulk phases formed by polyphilic liquid crystal dendrimers.  Condensed Matter Physics.  13 (3), 33001 (2010).
  40. Ilnytskyi J.  Relation between the grafting density of liquid crystal macromolecule and the symmetry of self-assembled bulk phase: coarse-grained molecular dynamics study.  Condensed Matter Physics.  16 (4), 43004 (2013).
  41. Ilnytskyi J. M., Trokhymchuk A., Schoen M.  Topological defects around a spherical nanoparticle in nematic liquid crystal: Coarse-grained molecular dynamics simulations.  The Journal of Chemical Physics.  141 (11), 114903 (2014).
  42. Ilnytskyi J.,  Slyusarchuk A., Saphiannikova M.  Photo-controllable percolation of decorated nanoparticles in a nanopore: molecular dynamics simulation study.  Mathematical Modeling and Computing.  3 (1), 33–42 (2016).
  43. Ilnytskyi J. M., Slyusarchuk A., Saphiannikova M.  Photocontrollable Self-Assembly of Azobenzene-Decorated Nanoparticles in Bulk: Computer Simulation Study.  Macromolecules.  49 (23), 9272–9282 (2016).
  44. Williams D. R. M., Halperin A.  Liquid-crystalline polymers in good nematic solvents: free chains, mushrooms, and brushes.  Macromolecules.  26 (16), 4208–4219 (1993).
  45. Shusaku N.  Inducing Planar Orientation in Side-Chain Liquid-Crystalline Polymer Systems via Interfacial Control.  The Chemical Record.  16 (1), 378–392 (2016).
  46. Peng B., Johannsmann D., Ruhe J.  Polymer Brushes with Liquid Crystalline Side Chains.  Macromolecules.  32 (20), 6759–6766 (1999).
  47. Uekusa T., Nagano S., Seki T.  Unique Molecular Orientation in a Smectic Liquid Crystalline Polymer Film Attained by Surface-Initiated Graft Polymerization.  Langmuir.  23 (8), 4642–4645 (2007).
  48. Mukai K., Hara M., Nagano S., Seki T.  High-Density Liquid-Crystalline Polymer Brushes Formed by Surface Segregation and Self-Assembly.  Angewandte Chemie International Edition.  55 (45), 14028–14032 (2016).
  49. Santer S.  Remote control of soft nano-objects by light using azobenzene containing surfactants.  Journal of Physics D: Applied Physics.  51 (1), 013002 (2017).
  50. Kopyshev A., Galvin C. J., Patil R. R., Genzer J., Lomadze N., Feldmann D., Zakrevski J., Santer S.  Light-Induced Reversible Change of Roughness and Thickness of Photosensitive Polymer Brushes. ACS Applied Materials & Interfaces.  8 (29), 19175–19184 (2016).
  51. Cheng S., Stevens M. J., Grest G. S.  Ordering nanoparticles with polymer brushes.  The Journal of Chemical Physics.  147 (22), 224901 (2017).
  52. Santer S., Rühe J.  Motion of nano-objects on polymer brushes.  Polymer.  45 (25), 8279–8297 (2004).
  53. Loebner S., Jelken J., Yadavalli N., Sava E., Hurduc N., Santer S.  Motion of Adsorbed Nano-Particles on Azobenzene Containing Polymer Films.  Molecules.  21 (12), 1663 (2016).
  54. Kumar S., Dory Y. L., Lepage M., Zhao Y.  Surface-Grafted Stimuli-Responsive Block Copolymer Brushes for the Thermo-, Photo- and {pH}-Sensitive Release of Dye Molecules.  Macromolecules.  44 (18), 7385–7393 (2011).
  55. Nie G., Li G., Wang L., Zhang X.  Nanocomposites of polymer brush and inorganic nanoparticles: preparation, characterization and application.  Polymer Chemistry.  7 (4), 753–769 (2016).
  56. Jelken J., Santer S.  Light induced reversible structuring of photosensitive polymer films.  RSC Advances.  9 (35), 20295–20305 (2019).
  57. Voth G. editor. Coarse-Graining of Condensed Phase and Biomolecular Systems.  CRC Press (2008).
  58. Rühle V., Junghans C., Lukyanov A., Kremer K., Andrienko D.  Versatile Object-Oriented Toolkit for Coarse-Graining Applications.  Journal of Chemical Theory and Computation.  5 (12), 3211–3223 (2009).
  59. Steiner T.  Dissipative Particle Dynamics: Simulation of Microfluidic Systems with Fluid Particle Methods on High Performance Computers (Microfluidics and Nanofluidics.  Shaker Verlag GmbH, Germany (2009).
  60. Slyusarchuk A., Ilnytskyi J.  Novel morphologies for laterally decorated metaparticles: molecular dynamics simulation.  Condensed Matter Physics.  17 (4), 44001 (2014).
  61. Ilnytskyi J. M.  Photo-Controllable Networks in Macromolecular Solutions and Blends, in Y. Holovatch, editor.  Order, Disorder and Criticality.  5, 227–269, World Scientific (2017).
  62. Hughes Z. E., Wilson M. R., Stimson L. M.  Coarse-grained simulation studies of a liquid crystal dendrimer: towards computational predictions of nanoscale structure through microphase separation.  Soft Matter.  1 (6), 436 (2005).
  63. Hughes Z. E., Stimson L. M., Slim H., Lintuvuori J. S., Ilnytskyi J. M., Wilson M. R.  An investigation of soft-core potentials for the simulation of mesogenic molecules and molecules composed of rigid and flexible segments.  Computer Physics Communications.  178 (10), 724–731 (2008).
  64. Lintuvuori J. S., Wilson M. R.  A new anisotropic soft-core model for the simulation of liquid crystal mesophases.  The Journal of Chemical Physics.  128 (4), 044906 (2008).
  65. Fowler P. W., Quinn C. M., Redmond D. B.  Decorated fullerenes and model structures for water clusters.  The Journal of Chemical Physics.  95 (10), 7678–7681 (1991).
  66. Vukićević R., Beuermann S.  Fullerenes Decorated with Poly(vinylidene fluoride).  Macromolecules.  44 (8), 2597–2603 (2011).
  67. Kihara T.  Convex Molecules in Gaseous and Crystalline States,  in Advances in Chemical Physics, pp. 147–188, Wiley-Blackwell (1963).
  68. Ilnytskyi J. M., Saphiannikova M.  Reorientation Dynamics of Chromophores in Photosensitive Polymers by Means of Coarse-Grained Modeling.  ChemPhysChem. 16 (15), 3180–3189 (2015).
  69. Baran Ł., Sokołowski S.  A comparison of molecular dynamics results for two models of nanoparticles with fixed and mobile ligands in two-dimensions.  Applied Surface Science.  396, 1343–1351 (2017).
  70. Baran Ł., Sokolowski S.  Effective interactions between a pair of particles modified with tethered chains.  The Journal of Chemical Physics.  147 (4), 044903 (2017).
  71. Wilson M. R., Ilnytskyi J. M., Stimson L. M.  Computer simulations of a liquid crystalline dendrimer in liquid crystalline solvents.  The Journal of Chemical Physics.  119 (6), 3509 (2003).
Mathematical Modeling and Computing, Vol. 7, No. 2, pp. 207–218 (2020)