Екологічне застосування гібридів целюлоза-TiO2

2020;
: сс. 93 - 101
1
Nanotecnologia, Universidade Federal do Rio de Janeiro, Brazil 2 Instituto de Macromoléculas Professora Eloísa Mano, Universidade Federal do Rio de Janeiro (IMA/UFRJ). Centro de Tecnologia
2
Nanotecnologia, Universidade Federal do Rio de Janeiro, Brazil
3
Instituto de Macromoléculas Professora Eloísa Mano, Universidade Federal do Rio de Janeiro (IMA/UFRJ). Centro de Tecnologia

Комбінацією обробленої кислотою целюлози та хімічно адсорбованого оксиду титану(IV) на її поверхні одержано гібридний матеріал для оброблення води з метою розкладу органічних сполук. За ступенем деградації метилового оранжевого оцінено фотокаталітичні властивості гібриду. Встановлено, що фотодеградаційна активність є вищою для гібриду, отриманого з целюлози, гідроліз якої проводився за підвищеної концентрації кислоти. В результаті діаметр волокон зменшується, що підтверджено результатами скануючою електронної мікроскопії. За допомогою термогравіметричного аналізу та рентгенівської дифракції встановлено, що більш гідролізований гібрид має нижчу температуру термічної деградації, і менший розмір нанокристалів целюлози, що дало можливість збільшити площу поверхні, а отже фіксацію наночастинок TiO2, які відповідають за фотодеструктивну активність. Збільшення активності фіксувалось через знебарвлення розчину барвника.

  1. Moreira L., Leonel F., Vieira R., Pereira J.: Rev. Bras. Saúde Prod. Anim., 2013, 14, 382.
  2. Solfa M., Brown R., Tsuzuki T., Rainey T.: Adv. Nat. Sci.: Nanosci. Nanotechnol., 2016, 7, 035004.
  3. George J., Sabapathi S.: Nanotechnol. Sci. Appl., 2015, 8, 45. https://doi.org/10.2147/NSA.S64386
  4. Qiu X., Shuwen H.: Materials, 2013, 6, 738. https://doi.org/10.3390/ma6030738
  5. Morawski A., Kusiak-Nejman E., Przepiórski J. et al.: Cellulose, 2013, 20, 1293. https://doi.org/10.1007/s10570-013-9906-6
  6. Postek M., Vladár A., Dagata J. et al.: Meas. Sci. Technol., 2010, 22, 024005. https://doi.org/10.1088/0957-0233/22/2/024005
  7. Habibi Y.: Chem. Soc. Rev., 2014, 43, 1519. https://doi.org/10.1039/C3CS60204D
  8. Wesarg F., Schlott F., Grabow J. et al.: Langmuir, 2012, 28, 13518. https://doi.org/10.1021/la302787z
  9. Espinosa S., Kuhnt T., Foster E., Weder C.: Biomacromolecules, 2013, 14, 1223. https://doi.org/10.1021/bm400219u
  10. Filpponen E.: PhD thesis, North Caroline State University 2009.
  11. Shon H., Phuntsho S., Okour Y. et al.: J. Korean Ind. Eng. Chem., 2008, 19, 1.
  12. Ismagilov Z., Shikina N., Mazurkova N. et al.: Sci. World J., 2012, 2012, 498345. https://doi.org/10.1100/2012/498345
  13. Li G., Nandgaonkar A., Wang Q. et al.: J. Membrane Sci., 2017, 525, 89. https://doi.org/10.1016/j.memsci.2016.10.033
  14. Gurr J.-R., Wang A., Chen C.-H., Jan K.-Y.: Toxicology, 2005, 213, 66. https://doi.org/10.1016/j.tox.2005.05.007
  15. Zywitzki D., Jing H., Tuysuz H., Chan C.: J. Mater. Chem. A, 2017, 5, 10957. https://doi.org/10.1039/C7TA01614J
  16. Schütz C., Sort J., Bacsik Z. et al.: PLoS ONE, 2012, 7, e45828. https://doi.org/10.1371/journal.pone.0045828
  17. Habibi Y., Lucia L., Rojas O.: Chem. Rev., 2010, 110, 3479. https://doi.org/10.1021/cr900339w
  18. Svagan A., Hedenqvist M., Berglund L.: Compos. Sci. Technol., 2009, 69, 500. https://doi.org/10.1016/j.compscitech.2008.11.016
  19. Bardet R., Belgacem M.: Cellulose, 2013, 20, 3025. https://doi.org/10.1007/s10570-013-0025-1
  20. Eichhorn S.: Soft Matter., 2011, 7, 303. https://doi.org/10.1039/C0SM00142B
  21. Fan M., Dai D., Huang B.: Fourier Transform Infrared Spectroscopy for Natural Fibres [in:] Salih S. Fourier Transform – Materials Analysis. InTechOpen 2012, 45-68. https://doi.org/10.5772/35482
  22. Lee K-Y., Aitomäki Y., Berglund L. et al.: Compos. Sci. Technol., 2014, 105, 15. https://doi.org/10.1016/j.compscitech.2014.08.032
  23. Senić Z., Bauk S., Vitorović-Todorović M. et al.: Sci. Techn. Rev., 2011, 61, 63.
  24. Baltazar P., Lara V., Cordoba G., Arroyo R.: J. Sol-Gel Sci. Technol., 2006, 37, 129. https://doi.org/10.1007/s10971-006-6432-0
  25. Lu J., Wang T., Drzal L.: Compos. Part A-Appl. S., 2008, 39, 738. https://doi.org/10.1016/j.compositesa.2008.02.003
  26. Wei L., Agarwal U.., Hirth K. et al.: Carbohydrate Polym., 2017, 169, 108. https://doi.org/10.1016/j.carbpol.2017.04.008
  27. Park S., Baker J., Himmel M. et al.: Biotechnol. Biofuels, 2010, 3, 1. https://doi.org/10.1186/1754-6834-3-10
  28. Cunha A., Freire C., Silvestre A. et al.: J. Colloid Interf. Sci., 2007, 316, 360. https://doi.org/10.1016/j.jcis.2007.09.002
  29. Thamaphat K., Limsuwan P., Ngotawornchai B.: Kasetsart J. (Nat. Sci.), 2008, 42, 357.
  30. Niu P.: Asian J. Chem., 2013, 25, 1103. https://doi.org/10.14233/ajchem.2013.13539