Моделювання плазмонних властивостей нанокомпозитних матеріалів на основі алмазоподібної вуглецевої плівки та наночастинок срібла

2016;
: cc. 292 - 298
1
Національний університет «Львівська політехніка»
2
Національний університет «Львівська політехніка»
3
Національний університет «Львівська політехніка»

Розраховано оптичні константи алмазоподібної вуглецевої плівки, з диспергованими в неї наночастинками срібла різної форми, за допомогою ефективної теорії Максвелла—Гарнетта. Здійснено моделювання оптичних характеристик нанокомпо- зитного матеріалу залежно від розміру і форми включень та матеріалу матриці.

1. Ajayan, P. M., Schadler, L. S., Braun, P. V (2003). Nanocomposite Science and Technology, Wiley-VCH Verlag GmbH Co, Weinheim. 2. Berini, P. (2014), “Surface plasmon photodetectors and their applications”, Laser & Photonics Reviews, vol. 8, no. 2, pp. 197–220. 3. Robertson, J. (2002), “Diamond like amorphous carbon”, Sci. Eng. R-Rep., vol. 37, pp. 129–281. 4. Podgornika, B., Vižintin, J., Jacobson, S., Hogmar, S. (2006), “Tribological behaviour of WC/C coatings operating under different lubrication regimes”, Wear, no 261, pp. 32–40. 5. Yaremchuk, I., Tamulevičienė, A., Tamulevičius, T., Šlapikas, K., Balevičius, Z., Tamulevičius, S., (2014), “Modeling of the plasmonic properties of DLC-Ag nanocomposite films”, Physica status solidi (a), vol. 21, no 2, pp. 329–335. 6. Tritsaris, G.A,. Mathioudakis, C., Kelires, P.C., Kaxiras, E., (2012), “Optical and elastic properties of iamond-like carbon with metallic inclusions: A theoretical study”, Journal of Applied Physics, voll. 112, pp. 103503-1 — 103503-6. 7. Maxwell, G., (1906), “Colours in metal glasses, in metallic films, and in metallic solutions. II”, Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Characterю, pp. 237–288. 8. Stroud, D., (1998), “The effective medium approximations: Some recent developments”, Superlattices and microstructures, vol. 23, no 3, pp. 567— 573. 9. Ruppin, R., (2000), “Evaluation of extended Maxwell-Garnett theories” Optics Communications, vol. 182, no 4, pp. 273–279. 10. Barrera, R.G., Monsivais, G., Mochán, W.L. (1988) “Renormalized polarizability in the Maxwell Garnett theory”, Physical Review B, vol. 38, no. 8, pp. 5371–5377. 11. Khlebtsov, N.G., (2008), “Optics and biophotonics of nanoparticles with a plasmon resonance”, Kvantovaya. Electroika, vol. 38. no 6, pp. 504–529. 12. Treacy, M.M.J., (2002), “Dynamical diffraction explanation of the anomalous transmission of light through metallic gratings” Physical Review B, vol. 66, no 19, pp. 195105–19109. 13. Johnson, P.B., Christy, R-W., (1972), “Optical constants of the noble metals”, Physical review B, vol. 6, no 12, pp. 4370–4379. 14. Berger, A., (1993), “Prolate silver particles in glass surfaces”, Journal of non-crystalline solids, vol. 163, no 2, pp. 185–194. 15. Meškinis, Š., Čiegis, A., Vasiliauskas, A., Šlapikas, K., Gudaitis, R., Yaremchuk, I., Fitio, V., Bobitski, Y., Tamulevičius, S., (2015), “Annealing Effects on Structure and Optical Properties of Diamond-Like Carbon Films Containing Silver”, Nanoscale Research Letters, vol. 11, no 146, pp. 1–9. 16. Bohren, C. F., (1983), Absorption and scattering of light by small particles, Wiley, New York.