Means and Methods of Collecting Indicators for Energy Supply Companies

2024;
: pp. 140 - 145
1
Lviv Polytechnic National University, Ukraine
2
Lviv Polytechnic National University
3
Lublin University of Technology

This study provides a comprehensive overview of the various means and methods employed in gathering data, emphasizing the need for advanced technologies in the face of increasing energy demands and evolving regulatory environments. A thorough comparative analysis focuses on several key aspects, including technology comparison, data accuracy and reliability, real-time data collection capabilities, cost effectiveness, scalability, and flexibility, consumer interaction, and feedback mecha- nisms. Particular attention has been given to the security and confidentiality of data, as well as the environmental implications. The analysis extends to explore hardware and technological advancements in the industry, comparing traditional systems with modern automated and digital solutions, such as smart meters and integrated data management platforms.

  1. Vazhenina, L. V., Magaril, E., &Mayburov,  I.  (2023). Digital management of resource efficiency of fuel and energy companies in a circular economy. Energies, 16(8), 3498. DOI: https://doi.org/10.3390/en16083498.
  2. Strezoski, L., Padullaparti, H. V., Ding, F., &Baggu, M. (2022). Integration of utility distributed energy resource management system and aggregators for evolving distribution system operators. Journal of Modern Power Systems and Clean Energy, 10(2), 277-285. DOI: https://doi.org/10.35833/mpce.2021.000667.
  3. Alahmed, A., & Tong, L. (2022). Integrating distributed energy resources. Energy Informatics Review, 13-31. DOI: https://doi.org/10.1145/3555006.3555008.
  4. Poroshenko, P. (2023). The law of Ukraine on housing and communal services [Electronic resource]. Verkhovna Rada. Available: https://zakon.rada.gov.ua/laws/show/ 2189-19#Text.
  5. Massaro, A., &Starace, G.  (2022).  Advanced  and complex energy systems monitoring and control: A review on available technologies and their application criteria. Sensors, 22(13), 4929. DOI: https://doi.org/ 10.3390/s22134929. 
  6. Ullah,   Z.,   Wang,   S.,   Wu,   G.,   Xiao,   M.,   Lai,   J., & Elkadeem, M. R. (2022). Advanced energy mana- gement strategy for microgrid using real-time monitoring interface. Journal of Energy Storage, 52, 104814. DOI: https://doi.org/10.1016/j.est.2022.104814.
  7. Selvam, P., Ramakrishnaprabu, G., Senthilkumar, K., Sathish, R., Devarajan, R., &Loganathan, P. (2022). Intrusive energy management with advanced smart metering and monitoring using IoT. In 4th International Conference on Inventive Research in Computing Applications              (ICIRCA),             1-6.   DOI: https://doi.org/10.1109/icirca54612.2022.9985661.
  8. Central Drug Research Institute. (2022). Energy management and monitoring systems, 171-185. DOI: https://doi.org/10.1201/9781003157137-7.
  9. Zhong, X., Jiang, Y. W., Hou, K., Cai, W., Yin, H., Liu, J., & Wang, Q. S. (2021). Design and application of energy management integrated monitoring system for energy storage power station. Earth and Environmental Science, 701(1), 12052. DOI: https://doi.org/10.1088/ 1755-1315/701/1/012052.
  10. Ajiboye, P. O., Agyekum, K. O. B. O., &Frimpong, E. A. (2024). Privacy and security of advanced metering infrastructure (AMI) data and network: A comprehensive review. Journal of Engineering Applied Science, 71, 91. DOI: https://doi.org/10.1186/s44147-024-00422-w.
  11. Mary, J. S. N. (2022). Design of digital meters for industries using data acquisition system. IOP Conference Series: Materials Science and Engineering, 1258(1), 012047. DOI: https://doi.org/10.1088/1757-899x/1258/1/012047.
  12. Li,  Y.,  Xiao,  T.  C.,  Wang,  J.,  &  Ding,  Z.  (2022). Comprehensive energy metering collection and detection management by computer network technology. In IEEE International Conference on Digitalization & Smart City Applications               (ICDSCA),          375-379. DOI: https://doi.org/10.1109/ICDSCA56264.2022.9987908.
  13. Mengmeng, Z., Shaolei, Z., Zhaolei, H., Min, C., Qiang, L., Hansong, T., Hui, Y., &Honglin, W. (2016). Metering accuracy simulation test system of digital electric energy meter.
  14. Verma, G., & Prakash, S. (2020).  A comparative  study based on different energy saving mechanisms based on green internet of things (GIoT). In IEEE International Conference on Recent Innovations in Telecommunication and Electronics (ICRITO) DOI: https://doi.org/10.1109/ ICRITO48877.2020.9197848.
  15. Sanchana, R., Kumar, D., Raj, M., & Umar, M. (2022). Automatic energy meter using IoT. EPRA International Journal of Research & Development, 168-173. DOI: https://doi.org/10.36713/epra11084.
  16. Gannavaram, T. K., & Reddy, G. R. (2021). IoT based electricity energy meter. Social Science Research Network. DOI: https://doi.org/10.2139/SSRN.3875420.
  17. Kumari, M., Yadav, K. B., Priyadarshi, A., &Rathore, V. (2022). Reliability indices calculation of advanced metering distribution system. In Lecture Notes in Electrical Engineering , 333-341. DOI: https://doi.org/10.1007/978- 981-19-0193-5_28.
  18. Su, M., Jiao, X., Li, J., Wu, S., & Wu, T. (2021). Accuracy and reliability analysis of pipe irrigation metering device for sandy water source. Water, 13(7), 947. DOI: https://doi.org/10.3390/w13070947.
  19. Ding Yong., Luo Qing., LyuJie., Liu Xue., Yan Xue., Wang Xiaowei. (2019). Real-time dynamic energy management and control system based on building energy consumption data.
  20. Jalali, M., &Alizadeh-Mousavi, O. (2022). Application of real-time distribution grid monitoring for grid forecasting and control considering incomplete information of resources behind-the-meter. Open Access Journal of Power and Energy, 9, 308-318. DOI: https://doi.org/10.1109/ OAJPE.2022.3195755.
  21. Goeller, T., Wenninger, M., & Schmidt, J. (2018). Towards cost-effective utility business models: Selecting a communication architecture for the rollout of new smart energy                           services,               231-237. DOI: https://doi.org/10.5220/0006759202310237.
  22. Lee, J., Choi, W., & Kim, J. (2021). A cost-effective CNN- LSTM-based solution for predicting faulty remote water meter reading devices in AMI systems. Sensors, 21(18), 6229. DOI: https://doi.org/10.3390/S21186229.
  23. Mathieu, S., de Villena, M., Millan, M., Vermeulen, E., & Ernst, D. (2019). Harnessing the flexibility of energy management systems: A retailer perspective. Proceedings of PowerTech.    DOI: https://doi.org/10.1109/PTC.2019.8810813.
  24. Avancini, D. B., Martins, S. G. B., Rabelo, R. A. L., Solic, P., & Rodrigues, J. J. P. C. (2018). A flexible IoT energy monitoring solution. In 3rd International Conference on Smart and Sustainable Technologies (SpliTech), 1-6. DOI: https://doi.org/10.1109/BigData.2018.8622154.
  25. Anwar, S., Ahmad, T., &Wahab, F. E. (2021). Energy management in domestic household to reduce monthly bill through feedback. International Journal of Engineering Works,           8(4),     138-146. DOI: https://doi.org/10.34259/ijew.21.804138146.
  26. Herrmann, M. R., Costanza, E., & Brumby, D. P. (2021). Exploring domestic energy consumption feedback through interactive annotation. Energy Efficiency, 90. DOI: https://doi.org/10.1007/s12053-021-09999-0.
  27. Alrizq, M., de Doncker, E., & Fong, A. (2019). Changing energy consumption patterns based on multi-agent human behavior modeling for analyzing the effects of feedback techniques. Power and Energy Conference at Illinois (PECI). DOI: https://doi.org/10.1109/PECI.2019.8698779.
  28. Abdalzaher, M. S., Fouda, M. M., &Ibrahem, M. I. (2022). Data privacy preservation and security in smart metering systems. Energies, 15(19), 7419. DOI: https://doi.org/10.3390/en15197419.
  29. Ağirman, E. (2023). Security aspects of smart meter infrastructures. In Lecture Notes in Energy, 77-154. DOI: https://doi.org/10.1007/978-3-031-27556-2_5.
  30. Stefan, M., Lopez, J. G., & Olsen, R. L. (2018). Exploring the potential of modern advanced metering infrastructure in low-voltage grid monitoring systems. In IEEE International Conference on Big Data (Big Data), 3543-3548. DOI: https://doi.org/10.1109/BigData.2018.8622154.