The algorithmic approach to the evaluation optimality of clustering results by distance criterion is proposed. The approach is based on solving two-criterion optimization by building and evaluating the optimality criteria in the form of index functions.
1. Ту Дж., Гонсалес Р. Принципы распознавания образов. – М.: Мир, 1978. 2. Дюран Б., Оделл П. Кластерный анализ.– М.: Статистика, 1977. 3 Мандель И.Д. Кластерный анализ. – М.: Финансы и статистика, 1988. 4. Барселян А.А., Куприянов М.С., Степаненко В.В., Холод И.И. Технология анализа данных: Data Mining, Visual Mining, Text Mining, OLAP. – СПб.: БХВ-Петербург, 2007. 5. Rousseeuw P.J. Silhouettes: a graphical aid to the interpretation and validation of cluster analysis // Journal of Computational and Applied Mathematics. – 1987. – Vol.20. – P.53–65. 6. Bezdek J.C., Pal N.R. Some new indexes of cluster validity. // IEEE Transactions on Systems, Man and Cebernetics. – 1998. – Vol.28. – P.301–315. 7. Dunn J. Well separated clusters and optimal fuzzy partitions // Journal of Cybernetics. – 1974. – Vol.4. – P.95–104. 8. Stekh Y., Fajsal M.E. Sardieh, Lobur М. System for a cluster analysis. – Proceedings of the Xth International Conference “Modern Problems of Radio Engineering, Telecomunications, and Computer Science” // IEEE TCSET’2010. – Lviv–Slavske. – 2010. – P.236 9. Stekh Y., Fajsal M.E. Sardieh, Kernytskyy А., Nykyforchyn R. Dialog graphical system of classification with the help of distance function. – Proceedings of the XVI Ukrainian-Polish Conference on “CAD in Machinery Design. Implementation and Education Problems” // CADMD’2008. – Lviv, 2008. – P.88–89.