For the first time, a statistical model of a pseudo-random number generator (PRNG) with the Collatz transformation function is constructed and investigated in this paper. The PRNG is implemented in the Python statistical programming environment, and the function is obtained using the inverse transformation method. It is established that the probability integral function takes the form of a transcendental polynomial of quadratic nature, within which the range of PRNG values is justified.
- Ballesteros, Dora, M., Peña, Jimmy, & Renza, Diego. (2018). A Novel Image Encryption Scheme Based on Collatz Conjecture. Entropy, 20(12), 901. https://doi.org/10.3390/e20120901
- Isakov, O., & Voitusik, S. (2023). Comparative analysis of digital noise generated by addative Fobonacci generatos. Ukrainian Journal of Information Technology, 5(1), 67-76. https://doi.org/10.23939/ujit2023.01.067
- NIST SP 800-22. A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications. https://csrc.nist.gov/publications/nistpubs//SP80022rev1a.pdf
- Horbenko, I.D. "Analysis of random bit generators according to ISO/IEC 18031 standard and recommendations for its application in Ukraine" / Horbenko, I.D., Shapochka, N.V. // International Symposium "Issues of Computational Optimization". - Katsiveli. - 2009. - P.164-170.
- Andrea Rock. Pseudorandom Number Generators for Cryptographic Applications / Andrea Rock // Diplomarbeit zur Erlangung des Magistergrades an der Naturwissenschaftlichen Fakultat der Paris-Lodron-Universitat Salzburg. – Salzburg. – 2005
- Application Notes and Interpretation of the Scheme (AIS) 31. Functionality classes and evaluation methodology for physical random number generators. Certification body of the BSI in context of certification scheme. BSI, 2001
- ISO/IEC 18031:2005(E). Information technology – Security techniques – Random bit generation
- P. Kosobutskyy. The Collatz problem as a reverse problem on a graph tree formed from Q*2^n (Q=1,3,5,7,…) Jacobsthal-type numbers. arXiv:2306.14635v1
- X. Henderson. Rapsody in Numbers. https://yozh.org/
- Smith, J.K., & Johnson, L. (2020). "A study on the implementation of linear random number generators using the Collatz transformation function." Proceedings of the IEEE International Conference on Computational Intelligence and Computing Research, 78-83.