This paper explores multifractal analysis for the selected time series water pollution data set and further prediction based on BOD measure with ARFIMA-based fractal model. MFDFA multifractal algorithm is applied for estimating the fractal differentiation parameter of the ARFIMA. The obtained results are compared with similar obtained with autoregressive ARIMA model and basic ARFIMA fractal model. The study reveals an enhancement in accuracy with the use of combination of multifractal analysis and fractal methods for water pollution prediction
[1] Information on https://sdgs.un.org/goals
[2] E.R. Fuhrmeister, K.J. Schwab, T.R. Julian, Estimates of Nitrogen, Phosphorus, Biochemical Oxygen Demand, and Fecal Coliforms Entering the Environment Due to Inadequate Sanitation Treatment Technologies in 108 Low and Middle Income Countries, Environ. Sci. Technol. 49 (2015) 11604-11611. https://doi.org/10.1021/acs.est.5b02919
[3] O. Vigiak, B. Grizzetti, A. Udias-Moinelo, M. Zanni, C. Dorati, F. Bouraoui, A. Pistocchi, Predicting biochemical oxygen demand in European freshwater bodies, Sci. Total Environ. 666 (2019) 1089-1105. https://doi.org/10.1016/j.scitotenv.2019.02.252
[4] T. Tang, M. Strokal, M.T.H. van Vliet, P. Seuntjens, P. Burek, C. Kroeze, S. Langan, Y. Wada, Bridging global, basin and local-scale water quality modeling towards enhancing water quality management worldwide, Curr. Opin. Env. Sust. 36 (2019) 39-48. https://doi.org/10.1016/j.cosust.2018.10.004
[5] Y. Wen, G. Schoups, N. van de Giesen, Organic pollution of rivers: Combined threats of urbanization, livestock farming and global climate change, Sci. Rep. 7 (2017) 43289. https://doi.org/10.1038/srep43289
[6] E.A. Williams-Subiza, Y.A. Assef, C. Brand, Point source pollution influences water quality of Patagonian streams more than land cover, River Res. Appl. 38 (2022) 69–79. https://doi.org/10.1002/rra.3881
[7] J. Lee, S. Lee, S. Yu, D. Rhew, Relationships between water quality parameters in rivers and lakes: BOD5, COD, NBOPs, and TOC, Environ. Monit. Assess. 188 (2016) 252. https://doi.org/10.1007/s10661-016-5251-1
[8] T. Siwiec, L. Reczek, M. Michel, B. Gut, P. Hawer-Strojek, J. Czajkowska, K. Jozwiakowski, M. Gajewska, P. Bugajski, Correlations between organic pollution indicators in municipal wastewater, Arch. Environ. Prot. 44 (2018) 50-57.
[9] K. Liu, Y. Chen, X. Zhang, An Evaluation of ARFIMA (Autoregressive Fractional Integral Moving Average) Programs. Axioms. 6 (2017) 1-16. https://doi.org/10.3390/axioms6020016
[10] B.K. Ray, Modeling long-memory processes for optimal long-range prediction, Journal of Time Series Analysis 14 (1993) 511-525. https://doi.org/10.1111/j.1467-9892.1993.tb00161.x
[11] Y. Sokolovskyy, M. Levkovych, O. Mokrytska and Y. Kaspryshyn, "Mathematical Modeling of Nonequilibrium Physical Processes, Taking into Account the Memory Effects and Spatial Correlation," 2019 9th International Conference on Advanced Computer Information Technologies (ACIT), Ceske Budejovice, Czech Republic, 2019, pp. 56-59. https://doi.org/10.1109/ACITT.2019.8780011
[12] Sokolovskyy, Y.; Drozd, K.; Samotii, T.; Boretska, I. Fractional-Order Modeling of Heat and Moisture Transfer in Anisotropic Materials Using a Physics-Informed Neural Network. Materials 2024, 17, 4753. https://doi.org/10.3390/ma17194753
[13] River Water Quality Monitoring 1990 to 2018, 2022. URL: https://ckan.publishing.service.gov.uk/dataset/ river-water-quality-monitoring-1990-to-201821.
[14] D. Safitri, Mustafid, D. Ispriyanti, Sugito, Gold price modeling in Indonesia using ARFIMA method, J. Phys.: Conf. Ser. 1217 (2019) 012087. https://doi.org/10.1088/1742-6596/1217/1/012087
[15] X. Zhang, G. Zhang, L. Qiu, B. Zhang, Y. Sun, Z. Gui, Q. Zhang, A Modified Multifractal Detrended Fluctuation Analysis (MFDFA) Approach for Multifractal Analysis of Precipitation in Dongting Lake Basin, China, Water. 11 (2019) 891. https://doi.org/10.3390/w11050891
[16] L. Ding, Y. Luo, Y. Lin, Y. Huang, Revisiting the Relations Between Hurst Exponent and Fractional Differencing Parameter for Long Memory, Phys. A: Stat. Mech. Appl. 566 (2021) 125603. https://doi.org/10.1016/j.physa.2020.125603