Optimization of the Algorithm Flow Graph Width in Neural Networks to Reduce the Use of Processor Elements on Single-board Computers

2024;
: pp. 232-241
1
Lviv Polytechnic National University
2
Lviv Polytechnic National University

The article presents a method for optimizing the algorithm flow graph of a deep neural network to reduce the number of processor elements (PE) required for executing the algorithm on single-board computers. The proposed approach is based on the use of a structural matrix to optimize the neural network architecture without loss of performance. The research demonstrated that by reducing the width of the graph, the number of processor elements was reduced from 3 to 2, while maintaining network performance at 75% efficiency. This approach is significant as it expands the potential applications of neural networks in embedded systems and IoT, enhancing the efficiency of computational resource utilization on devices with limited computational capabilities, ensuring effective use of resources.

  1. Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang, Shoumeng Yan, and Changshui Zhang. 2017. Learning Efficient Convolutional Networks through Network Slimming. CoRR abs/1708.06519, (2017). DOI: 10.48550/arXiv.1708.06519
  2. Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, and Joel S. Emer. 2017. Efficient Processing of Deep Neural Networks: A Tutorial and Survey. CoRR abs/1703.09039, (2017). DOI: 10.48550/arXiv.1703.09039
  3. Hengyuan Hu, Rui Peng, Yu-Wing Tai, and Chi-Keung Tang. 2016. Network Trimming: A Data-Driven Neuron Pruning Approach towards Efficient Deep Architectures. CoRR abs/1607.03250, (2016). DOI: 10.48550/arXiv.1607.03250
  4. Song Han, Jeff Pool, John Tran, and William J. Dally. 2015. Learning both Weights and Connections for Efficient Neural Networks. CoRR abs/1506.02626, (2015). DOI: 10.48550/arXiv.1506.02626
  5. Мельник, А.О., Яковлєва, І.Д. і Ющенко, В.Ю. 2010. ПОБУДОВА ТА МАТРИЧНЕ ПОДАННЯ ПОТОКОВОГО ГРАФА АЛГОРИТМУ. Вісник Вінницького політехнічного інституту. 3 (Листоп. 2010), 93–99. URL: https://visnyk.vntu.edu.ua/index.php/visnyk/article/view/757 (Дата звернення: 16 Жовтня 2024)
  6. Мельник, А.О., і Мицко, Ю.Є. 2012. ВИКОНАННЯ ПОДАНИХ ПОТОКОВИМ ГРАФОМ АЛГОРИТМІВ З ВИКОРИСТАННЯМ ТЕХНОЛОГІЇ GPGPU. Вісник Національного університету "Львівська політехніка", (745), 124-130. URL: https://ena.lpnu.ua/handle/ntb/20127 (Дата звернення: 16 Жовтня 2024)
  7. Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. 2015. Going deeper with convolutions. In 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 1–9. DOI: 10.1109/CVPR.2015.7298594
  8. Maher G. M. Abdolrasol, S. M. Suhail Hussain, Taha Selim Ustun, Mahidur R. Sarker, Mahammad A. Hannan, Ramizi Mohamed, Jamal Abd Ali, Saad Mekhilef, and Abdalrhman Milad. 2021. Artificial Neural Networks Based Optimization Techniques: A Review. Electronics 10, 21 (2021). DOI: 10.3390/electronics10212689
  9. Feed-forward propagation from scratch in Python. Online resource. URI: https://subscription.packtpub.com/book/data/9781789346640/1/ch01lvl1sec0...
  10. Фастюк, Є., і Гузинець, Н. 2024. ОПТИМІЗАЦІЯ АЛГОРИТМУ РОБОТИ НЕЙРОННОЇ МЕРЕЖІ ЗА РАХУНОК ЗМЕНШЕННЯ ШИРИНИ ПОТОКОВОГО ГРАФА АЛГОРИТМУ. Матеріали конференцій МЦНД, (31.05.2024; Черкаси, Україна), 214–216. DOI: 10.62731/mcnd-31.05.2024.006
  11.  Fastiuk, Y., Bachynskyy, R., and Huzynets, N. 2021. Methods of Vehicle Recognition and Detecting Traffic Rules Violations on Motion Picture Based on OpenCV Framework. Advances in Cyber-Physical Systems, 6(2), 105-111. DOI: 10.23939/acps2021.02.105