Evaluation of Classification Accuracy Using Feedforward Neural Network for Dynamic Objects

2024;
: pp. 260 - 272
1
Lviv Polytechnic National University
2
Lviv Polytechnic National University, Information Systems and Networks Department

Abstract. This paper investigates the impact of the number of hidden layers, the number of neurons in these layers, and the types of activation functions on the accuracy of classifying projectiles of six types (A – (artillery); A/M – (artillery/missile); A/R – (armor-piercing); A/RC – (armor-piercing- incendiary); M – (missile); R – (armor-piercing shells)) using a multi-layer neural network, evaluated by a confusion matrix. Specifically, confusion matrices were constructed to assess the accuracy of classifying projectiles of six types (A – (artillery); A/M – (artillery/missile); A/R – (armor-piercing), ; A/RC – (armor-piercing-incendiary); M – (missile); R – (armor-piercing shells)) using a multi-layer perceptron with one, two, and three hidden layers and activation functions: Logistic, Tanh, Relu, Softmax, respectively. It was found that the highest accuracy in classifying projectiles is achieved using a neural network with two hidden layers, with 33 neurons in the first hidden layer with Tanh activation function and 8 neurons with Tanh activation function in the second hidden layer, and Softmax for the neurons in the output layer.

  1. Krstinić, D., Braović, M., Šerić, L., & Božić-Štulić, D. (2020). Multi-label classifier performance evaluation with confusion matrix. Computer Science & Information Technology, 1, 1–14. DOI:10.5121/csit.2020.100801
  2. Xu, J., Zhang, Y., & Miao, D. (2020). Three-way confusion matrix for classification: A measure driven view. Information sciences, 507, 772–794. DOI:10.1016/j.ins.2019.06.064
  3. Heydarian, M., Doyle, T. E., & Samavi, R. (2022). MLCM: Multi-label confusion matrix. IEEE Access, 10, 19083–19095.    DOI:10.1109/ACCESS.2022.3151048
  4. Vujović, Ž. (2021). Classification model evaluation metrics. International Journal of Advanced Computer Science and Applications, 12(6), 599–606. DOI:10.14569/IJACSA.2021.0120670
  5. Hasnain, M., Pasha, M. F., Ghani, I., Imran, M., Alzahrani, M. Y., & Budiarto, R. (2020). Evaluating trust prediction and confusion matrix measures for web services ranking. Ieee Access, 8, 90847–90861. DOI:10.1109/ACCESS.2020.2994222
  6. Zhou, X., & Del Valle, A. (2020, March). Range based confusion matrix for imbalanced time series classification. In 2020 6th Conference on Data Science and Machine Learning Applications (CDMA) (pp. 1–6). IEEE.    DOI:10.1109/CDMA47397.2020.00006
  7. Sanni, R. R., & Guruprasad, H. S. (2021). Analysis of performance metrics of heart failured patients using Python and machine learning algorithms. Global transitions proceedings, 2(2), 233–237. DOI:10.1016/j.gltp.2021.08.028
  8. Gupta, A., Parmar, R., Suri, P., & Kumar, R. (2021, December). Determining Accuracy Rate of Artificial Intelligence Models using Python and R-Studio. In 2021 3rd International Conference on Advances in Computing, Communication Control and Networking (ICAC3N) (pp. 889–894). IEEE. DOI:10.1109/ICAC3N53548.2021.9725687
  9. Peleshchak, R., Lytvyn, V., Peleshchak, I., Khudyy, A., Rybchak, Z., & Mushasta, S. (2022). Text Tonality Classification Using a Hybrid Convolutional Neural Network with Parallel and Sequential Connections Between Layers. In COLINS (pp. 904–915). DOI:10.3390/sym16040485
  10. Peleshchak, R., Lytvyn, V., Kholodna, N., Peleshchak, I., & Vysotska, V. (2022, February). Two-stage AES encryption method based on stochastic error of a neural network. In 2022 IEEE 16th International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering (TCSET) (pp. 381–385). IEEE.   DOI:10.1109/AIACT.2019.8847896
  11. Shamrat, F. J. M., Azam, S., Karim, A., Ahmed, K., Bui, F. M., & De Boer, F. (2023). High-precision multiclass classification of lung disease through customized MobileNetV2 from chest X-ray images. Computers in Biology and Medicine, 155, 106646. DOI:10.1016/j.compbiomed.2023.106646
  12. Khan, M. S., Nath, T. D., Hossain, M. M., Mukherjee, A., Hasnath, H. B., Meem, T. M., & Khan, U. (2023). Comparison of multiclass classification techniques using dry bean dataset. International Journal of Cognitive Computing in Engineering, 4, 6–20. DOI:10.1016/j.ijcce.2023.01.002
  13. Nahiduzzaman, M., Goni, M. O. F., Hassan, R., Islam, M. R., Syfullah, M. K., Shahriar, S. M., ... & Kowalski, M. (2023). Parallel CNN-ELM: A multiclass classification of chest X-ray images to identify seventeen lung diseases including COVID-19. Expert Systems with Applications, 229, 120528. DOI:10.21203/rs.3.rs-3358084/v1
  14. Du, Y., Yang, Y., Tao, D., & Hsieh, M. H. (2023). Problem-dependent power of quantum neural networks on multiclass classification. Physical Review Letters, 131(14), 140601. DOI:10.1103/PhysRevLett.131.140601
  15. Afzal, S., Ziapour, B. M., Shokri, A., Shakibi, H., & Sobhani, B. (2023). Building energy consumption prediction using multilayer perceptron neural network-assisted models; comparison of different optimization algorithms. Energy, 282, 128446. DOI:10.1016/j.energy.2023.128446
  16. UkrOboronProm. (2023). Catalogue Radar, Radio Communication and Air Defence Systems. Retrieved from http://progress.gov.ua/en/catalogs/