Selection and Implementation of Navigation Methods for Unmanned Aerial Vehicles on Modern Computer Components

2024;
: pp. 158-170
1
Lviv Polytechnic National University, Ukraine
2
Lviv Polytechnic National University, Ukraine

This article presents an analysis and selection of navigation methods for unmanned aerial vehicles (UAVs) that can be implemented using modern computer components. A classification of navigation methods is provided based on key criteria: system operating principles, sensor types, accuracy, reliability, power consumption, and the potential for integration with other UAV systems. The use of inertial systems based on MEMS sensors, satellite positioning systems, and visual odometry is considered. A combined sensor application approach is proposed to enhance the accuracy and reliability of UAV navigation. Prospects for the integration of MEMS sensors with system-on-chip (SoC) solutions are outlined to further reduce the size, weight, and power consumption of navigation systems. The research results showed that the use of MEMS sensors can provide a significant reduction in the weight of the navigation system from 250 g to less than 50 g, as well as a significant reduction in power consumption to 10-16.5 mW, compared to traditional inertial devices.

  1. Groves, P. D. (2013). Navigation Methods for Unmanned Aerial Vehicles: Principles and Classifications. Journal of Navigation, 66(4), 571-591. DOI: 10.1017/S0373463313000301
  2. Borenstein, J., Everett, H. R., & Feng, L. (1996). Sensor-Based Navigation for Autonomous Mobile Robots: A Review. Autonomous Robots, 4(2), 113-156. DOI: 10.1007/BF00148536
  3. Barton, J. D. (2012). Signal Processing Techniques for Navigation Systems in Unmanned Vehicles. IEEE Transactions on Aerospace and Electronic Systems, 48(3), 28-30. DOI: 10.1109/TAES.2012.6237563
  4. Kuznetsov, A. V., & Petrov, M. N. (2018). Classification of Navigation Methods for Unmanned Systems Based on Signal Acquisition. International Journal of Advanced Robotic Systems, 15(2), 1-12. DOI: 10.1177/1729881418766541
  5. Zhang, L., Wang, Y., & Sun, Z. (2020). Comprehensive Survey on Navigation Systems for Unmanned Vehicles: Applications and Environments. IEEE Access, 8, 101-107. DOI: 10.1109/ACCESS.2020.2996468
  6. Lee, J. H., Choi, J. S., & Lee, B. H. (2019). Navigation Techniques for Different Application Domains of Unmanned Systems: A Comprehensive Review. Robotics and Autonomous Systems. DOI: 10.1016/j.robot.2019.03.003
  7. Bingham, B., & Seering, W. (2006). Hypothesis Grids: Improving Long Baseline Navigation for Autonomous Underwater Vehicles. IEEE Journal of Oceanic Engineering, 31(1), 209-218. DOI: 10.1109/JOE.2006.872220
  8. May, C., & Szemerei, M. (2020). Influence of Fringing Fields on Parallel Plate Capacitance for Capacitive MEMS Accelerometers. In IEEE XVIth International Conference on Perspective Technologies and Methods in MEMS Design (MEMSTECH), 82-85. DOI: 10.1109/MEMSTECH49584.2020.9109500
  9. Chikovani, V., Suschenko, O., & Azarskov, V. (2020). Errors Compensation of Ring-Type MEMS Gyroscope Operating in Differential Mode. In IEEE XVIth International Conference on Perspective Technologies and Methods in MEMS Design (MEMSTECH), 68-71. DOI: 10.1109/MEMSTECH49584.2020.9109476
  10. Lee, J., et al. (2022). Integrated MEMS IMU for Compact and Efficient UAV Navigation. Journal of Microelectromechanical Systems, 31, 456-467. DOI: 10.1109/JMEMS.2022.3157685
  11. Wang, R.-y., & Ma, H. (2020). An INS/GNSS integrated navigation in GNSS denied environment using recurrent neural network. Defence Technology, 16(2), 334-340. DOI: 10.1016/j.dt.2019.08.011
  12. Тристан, А. В., Бережний, А. О., & Крижанівський, І. М. (2019). Математичні моделі та методи планування повітряної розвідки рухомих й стаціонарних об'єктів з застосуванням БПЛА. In Збірник матеріалів VII-ої міжнародної науково-технічної конференції "Проблеми інформатизації" (Vol. 3, p. 41). URL: https://repository.kpi.kharkov.ua/handle/KhPI-Press/68285
  13. Zhang, L., Xu, D., Liu, M., Yan, W., & Gao, J. (2009). An Algorithm for Cooperative Navigation of Multiple UUVs. In Proc. of the sixth Int. Symposium on Underwater Technology, UT2009 (No. 78, pp. 1-6). DOI: 10.1109/UT.2009.5416910
  14. Lora-Millan, J. S., Hidalgo, A. F., & Rocon, E. (2021). An IMUs-Based Extended Kalman Filter to Estimate Gait Lower Limb Sagittal Kinematics for the Control of Wearable Robotic Devices. IEEE Access, 9, 144540-144554. DOI: 10.1109/ACCESS.2021.3122160