Reinforcement of alginate-gelatin hydrogel using functionalized polypropylene microfiber

2020;
: 232-238
1
Lviv Polytechnic National University
2
Lviv Polytechnic National University
3
Lviv Polytechnic National University
4
Lviv Polytechnic National University
5
Lviv Polytechnic National University

In this paper the method of modification of polypropylene planar surfaces and microfibers through covalent grafting of a polyacrylic acid nanolayer by a free radical mechanismis presented.After grafting of the nanolayers, the hydrophobic surface of the polypropylene acquires hydrophilic properties. These changes are confirmed by the alteration of the free surface energy on the planar surfaces and by the increase of retentioned water by the microfibers before and after modification. Reinforcing of the alginate-gelatin hydrogel by modified microfibers (1% in the hydrogel) allows to achieve a significant (100%) increase of its mechanical properties.

1. Koehler, J., Brandl, F. P., & Goepferich, A. M. (2018). Hydrogel wound dressings for bioactive treatment of acute and chronic wounds. European Polymer Journal, 100, 1-11. doi: 10.1016/j.eurpolymj.2017.12.046
https://doi.org/10.1016/j.eurpolymj.2017.12.046
2. Hennink, W., & Nostrum, C. V. (2012). Novel crosslinking methods to design hydrogels. Advanced Drug Delivery Reviews, 64, 223-236. doi: 10.1016/j.addr.2012.09.009
https://doi.org/10.1016/j.addr.2012.09.009
3. Alaei, J.,  Boroojerdi, S. H., Rabiei, Z. (2005). Application of hydrogels in drying operation. Petrol Coal,47(3), 32-37
4. Boateng, J., Burgos-Amador, R., Okeke, O., & Pawar, H. (2015). Composite alginate and gelatin based bio-polymeric wafers containing silver sulfadiazine for wound healing. International Journal of Biological Macromolecules, 79, 63-71. doi: 10.1016/j.ijbiomac.2015.04.048
https://doi.org/10.1016/j.ijbiomac.2015.04.048
5. Oyen, M. L. (2013). Mechanical characterisation of hydrogel materials. International Materials Reviews, 59(1), 44-59. doi: 10.1179/1743280413y.0000000022
https://doi.org/10.1179/1743280413Y.0000000022
6. Khan, A., Othman, M. B. H., Razak, K. A., & Akil, H. M. (2013). Synthesis and physicochemical investigation of chitosan-PMAA-based dual-responsive hydrogels. Journal of Polymer Research, 20(10). doi: 10.1007/s10965-013-0273-7
https://doi.org/10.1007/s10965-013-0273-7
7. Peppas, N. A., Huang, Y., Torres-Lugo, M., Ward, J. H., & Zhang, J. (2000). Physicochemical Foundations and Structural Design of Hydrogels in Medicine and Biology. Annual Review of Biomedical Engineering, 2(1), 9-29. doi: 10.1146/annurev.bioeng.2.1.9
https://doi.org/10.1146/annurev.bioeng.2.1.9
8. Schoener, C. A., Hutson, H. N., & Peppas, N. A. (2012). pH-responsive hydrogels with dispersed hydrophobic nanoparticles for the oral delivery of chemotherapeutics. Journal of Biomedical Materials Research Part A, 101A(8), 2229-2236. doi: 10.1002/jbm.a.34532
https://doi.org/10.1002/jbm.a.34532
9. Uyama, Y., Kato, K., & Ikada, Y. (n.d.). Surface Modification of Polymers by Grafting. Grafting/Characterization Techniques/Kinetic Modeling Advances in Polymer Science, 1-39. doi: 10.1007/3-540-69685-7_1
https://doi.org/10.1007/3-540-69685-7_1
10. Tirrell, M., Kokkoli, E., & Biesalski, M. (2002). The role of surface science in bioengineered materials. Surface Science, 500(1-3), 61-83. doi: 10.1016/s0039-6028(01)01548-5
https://doi.org/10.1016/S0039-6028(01)01548-5
11. Reznickova, A., Kvitek, O., Kolarova, K., Smejkalova, Z., & Svorcik, V. (2017). Cell adhesion and proliferation on poly(tetrafluoroethylene) with plasma-metal and plasma-metal-carbon interfaces. Japanese Journal of Applied Physics, 56(6S1). doi: 10.7567/jjap.56.06gg03
https://doi.org/10.7567/JJAP.56.06GG03
12. Granados, E., Martinez-Calderon, M., Gomez, M., Rodriguez, A., & Olaizola, S. M. (2017). Photonic structures in diamond based on femtosecond UV laser induced periodic surface structuring (LIPSS). Optics Express, 25(13), 15330. doi: 10.1364/oe.25.015330
https://doi.org/10.1364/OE.25.015330
13. Varvarenko, S., Voronov, A., Samaryk, V., Tarnavchyk, I., Roiter, Y., Minko, S., … Voronov, S. (2011). Polyolefin surface activation by grafting of functional polyperoxide. Reactive and Functional Polymers, 71(2), 210-218. doi: 10.1016/j.reactfunctpolym.2010.11.028
https://doi.org/10.1016/j.reactfunctpolym.2010.11.028
14. Nosova, N., Roiter, Y., Samaryk, V., Varvarenko, S., Stetsyshyn, Y., Minko, S., … Voronov, S. (2004). Polypropylene surface peroxidation with heterofunctional polyperoxides. Macromolecular Symposia, 210(1), 339-348. doi: 10.1002/masy.20045063
https://doi.org/10.1002/masy.200450638
15. Samaryk, V., Tarnavchyk, I., Voronov, A., Varvarenko, S., Nosova, N., Kohut, A., & Voronov, S. (2009). A New Acrylamide-Based Peroxide Monomer: Synthesis and Copolymerization with Octyl Methacrylate. Macromolecules, 42(17), 6495-6500. doi: 10.1021/ma901211s
https://doi.org/10.1021/ma901211s
16. Samaryk, V., Voronov, A., Tarnavchyk, I., Varvarenko, S., Nosova, N., Budishevskaya,  O., Kohut, A., Voronov S. (2012) Formation of Coatings with Tailored Properties on Polyperoxide-Modified Polymeric Surfaces. Progress in Organic Coatings, 74(4), 687-696.doi.org/10.1016/j.porgcoat.2011.07.015
https://doi.org/10.1016/j.porgcoat.2011.07.015
17. Van Krevelen, D. V. (1976). Svoystva i khimicheskoye stroyeniye polimerov. Moscov: Khimiya.
18. Hogt, A. H., Meijer, J., & Jelenič, J. (1997). Modification of polypropylene by organic peroxides. Reactive Modifiers for Polymers, 84-132. doi: 10.1007/978-94-009-1449-0_2
https://doi.org/10.1007/978-94-009-1449-0_2